
The UCONABC Usage Control Model

JAEHONG PARK
George Mason University
and
RAVI SANDHU
NSD Security and George Mason University

In this paper, we introduce the family of UCONABC models for usage control (UCON), which in-
tegrate Authorizations (A), oBligations (B), and Conditions (C). We call these core models because
they address the essence of UCON, leaving administration, delegation, and other important but
second-order issues for later work. The term usage control is a generalization of access control
to cover authorizations, obligations, conditions, continuity (ongoing controls), and mutability. Tra-
ditionally, access control has dealt only with authorization decisions on users’ access to target
resources. Obligations are requirements that have to be fulfilled by obligation subjects for allowing
access. Conditions are subject and object independent environmental or system requirements that
have to be satisfied for access. In today’s highly dynamic, distributed environment, obligations and
conditions are also crucial decision factors for richer and finer controls on usage of digital resources.
Although they have been discussed occasionally in recent literature, most authors have been mo-
tivated from specific target problems and thereby limited in their approaches. The UCONABC
model integrates these diverse concepts in a unified framework. Traditional authorization deci-
sions are generally made at the time of requests but hardly recognize ongoing controls for relatively
long-lived access or for immediate revocation. Moreover, mutability issues that deal with updates
on related subject or object attributes as a consequence of access have not been systematically
studied.

Unlike other studies that have targeted on specific problems or issues, the UCONABC model
seeks to enrich and refine the access control discipline in its definition and scope. UCONABC
covers traditional access controls such as mandatory, discretionary, and role-based access control.
Digital rights management and other modern access controls are also covered. UCONABC lays the
foundation for next generation access controls that are required for today’s real-world information
and systems security. This paper articulates the core of this new area of UCON and develops several
detailed models.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access
controls; K.6.5 [Management of Computing and Information Systems]: Security and Protec-
tion—Unauthorized access

General Terms: Design, Security

This research was partially supported by the National Science Foundation.
Portion of this paper appeared in preliminary form under the title “Towards Usage Control Mod-
els: Beyond Traditional Access Control” in Proceedings of 7th ACM Symposium on Access Control
Models and Technologies, Monterey, CA, USA, 2002.
Author’s address: Jaehong Park and Ravi Sandhu, Laboratory for Information Security Technol-
ogy (LIST), ISE Department, George Mason University, Mail Stop 4A4, Fairfax, VA 22030; email:
jaehpark@gmu.edu; sandhu@gmu.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a fee.
C© 2004 ACM 1094-9224/04/0200-0128 $5.00

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004, Pages 128–174.

The UCONABC Usage Control Model • 129

Additional Key Words and Phrases: usage control, access control, digital rights management, trust,
privacy

1. INTRODUCTION

Technological innovations in computers and networks have enabled pervasive
availability and usability of digital information bringing us opportunities for
new business models and personal life styles. Because of these innovations, dig-
ital information no longer stays in computer systems only. It is now available
on many other devices such as mobile devices (PDA, cell phone, MP3 player,
etc.), and Internet-integrated home appliances (refrigerator, microwave ma-
chine, etc.) utilizing various communication methods such as CDs, DVDs, mem-
ory cards, mobile messaging, LANs, global Internet networks (either wired or
wireless), and so on. This pervasive computing phenomenon has raised several
new challenging issues for reliable and trusted controls on the usages of digital
resources throughout their life cycle.

The issue of usage control (UCON) on digital resources can be approached
from several viewpoints. In the following subsections, we examine each of these
approaches and their characteristics to motivate our approach. First, we explore
these issues in traditional access control viewpoint, then in modern access con-
trol and digital rights management (DRM) point of view. Then we discuss our
approach to UCON.

1.1 Traditional Access Control Viewpoints

In computer and information security history, there have been many attempts
to achieve trusted controls on digital resource usage. The earliest approach
was traditional access controls such as mandatory access control (MAC), dis-
cretionary access control (DAC), and role-based access control (RBAC). Access
control remains a major challenge for computer and information security in
modern cyberspace. Providers of services, resources, and digital content need
to selectively determine who can access these and exactly what access is pro-
vided. This is the central objective of access control.

Over the past 30+ years there has been much progress in access control, but
at its core the academic perspective has largely remained unchanged and cen-
tered around the access matrix model [Landwehr 1997; Lampson 1971]. The
essential concept of the access matrix is that a right is explicitly granted to a
subject to access an object in a specific mode, such as read or write. This right
exists whether or not the subject is currently accessing the object. Moreover,
the presumption is that the right enables repeated access until it is explicitly
revoked. In practice, the access matrix is never explicitly represented. Instead
access control lists (ACLs), capabilities or access relations are used. Groups and
roles, possibly in partially ordered seniority relationships, are used to further
simplify the actual representation of rights. A variety of DAC, MAC, and RBAC
models have emerged to accommodate a diverse range of real-world access con-
trol policies. In a sense, the practice of access control has grown further-and-
further away from the access matrix abstraction. But the core idea that access

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

130 • J. Park and R. Sandhu

is driven by rights granted to a subject to access an object remains. On the
theoretical side the seminal work of Harrison et al. [1976] established Turing
completeness of the access matrix. While this is a negative result for purposes
of safety analysis, it formally establishes the open-ended expressive power of
the access matrix.

In recent years, several researchers have proposed extensions to the basic
access matrix notion of subjects, rights, and objects. These have typically come
from specific perspectives and the extensions have tended to emphasize the
particular system or application focus of the authors. In distributed system
the notion of a principal’s identity and the meaning of an ACL entry granting
particular access to a principal was no longer as simple as in earlier timeshar-
ing systems [Abadi et al. 1993]. Traditionally, access control has focused on
the protection of computer and information resources in a closed system en-
vironment. The enforcement of control has been primarily based on identities
and attributes of known users by using a reference monitor and specified au-
thorization rules [Sandhu and Samarati 1994]. In today’s network-connected,
highly dynamic and distributed computing environments, digital information
is likely to be used and stored at various locations, hence has to be protected
regardless of user location and information location. Relaxing closed system re-
quirement introduces the need to control access by previously unknown users.
B2C mass distributions such as e-book systems or music file distributions are
also examples of stranger’s usages.

1.2 Modern Access Control and Digital Rights Management Viewpoints

With the advent of public-key infrastructure, recent research in authorizations
for strangers’ usages have been pursued under the name of trust manage-
ment [Blaze et al. 1996; Herzberg et al. 2000; Winsborough et al. 2000; Weeks
2001]. In many cases, trust management utilizes a user’s capabilities or proper-
ties for authorization in the form of digital credentials or certificates. However,
both traditional access controls and trust management have focused on pro-
tecting digital resources within server systems and do not deal with client-side
controls for locally stored digital information. More recently, by utilizing some
forms of client-side reference monitor, and by focusing on controlling usage of
already disseminated digital objects, the arena of DRM has brought out a sig-
nificant new perspective on access control problems [Sibert et al. 1995; Kaplan
1996; Rosenblatt et al. 2002; Wang et al. 2002]. The DRM requirement for per-
sistent access control [Schneck 1999] and the difficulty of achieving this on
a mass-scale is a significant complication. To enable trusted client-side com-
puting, there have been industry initiatives such as Microsoft’s Palladium and
Intel-driven Trusted Computing Platform Alliance (TCPA)[TCPA 2002], which
were partly originated from AEGIS [Arbaugh 1997]. Palladium and TCPA have
gained serious attention and concern because of their potential impacts on se-
curity and privacy issues as well as DRM [Anderson 2002]. DRM is likely to
utilize this kind of trusted computing base as a critical enabling technology.

DRM technologies have emerged in mid-1990s and gained notable public at-
tention recently. In Jan./Feb. 2001 issue of MIT Technology Review, DRM has

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 131

been recognized as one of the top 10 emerging technologies that will change
the world [MIT 2001]. Because of DRM’s potential opportunity for commercial
sector, current DRM solutions have been largely driven by commercial entities
and are mainly focused on intellectual property rights (IPR) protection that is
based on payment functions. For example, DRM has hardly recognized com-
mercial B2B transactions in their solutions though its underlying technologies
can be used for controls on this kind of sensitive information usage. For last
several years, many companies have developed various technical solutions for
DRM implementations. Many underlying technologies such as watermarking
technologies, use-control technologies (including client-side software, server-
side encapsulation software, etc.) have been studied. Some rights expression
languages (e.g., XrML, ODRL, etc.) also have been developed [ContentGuard
2002; Iannella 2002]. While these DRM techniques and mechanisms have dom-
inated recent DRM studies, many researchers now believe that there is a fun-
damental unity between DRM and access control. That is, DRM is not just a
collections of enabling technologies but also about business and security-related
policies and models for usage decisions and controls [LaMacchia 2002]. Studies
on well-defined, comprehensive models and policies for access control and DRM
will provide a foundation for more trusted and secure computing environment.

On a different front, several authors have realized that classic access control
is inadequate for modern applications. The notion of provisional authoriza-
tion [Kudo and Hada 2000; Jajodia et al. 2001] states that authorization is not
complete until the subject carries out some action to make the authorization
effective. The notion of task-based authorization [Thomas and Sandhu 1997]
treats all rights as consumable and brought into being just-in-time. In this view,
a right is a one-time (or k-time) permission obtained in context of enterprise
activity. Exercise of a consumable right can enable other rights for different
subjects and objects. Access control policy can be seen as one policy amongst
many that need to be managed and enforced in distributed system. The Ponder
system [Damianou et al. 2001] is a state-of-the-art example of work on pol-
icy languages that include but also transcend access control issues. A policy
framework directly oriented towards access control but with a number of very
useful extensions such as conditions and side-effects has been recently pub-
lished [Ryutov and Neuman 2001, 2002]. These authors also seek to develop
an API and extended ACL-based implementation of a portion of their model.
From an application perspective the healthcare domain continues to provide
significant challenge for traditional access control because of the complexity of
its policies and the number of different parties with different interests [Baker
et al. 1997; HHS 2002].

1.3 Usage Control Approaches

The research cited above encompasses many significant achievements in spe-
cific target problems. At the same time, the specific focus has resulted in lack of
comprehensiveness and systematic treatment of fundamental issues. Studies
on access controls, trust management, and DRM have followed their own tracks
and have rarely influenced each other. Although traditional access controls have

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

132 • J. Park and R. Sandhu

shown limitations to cover modern digital environments, there has been note-
worthy work on security policies and models for controlling digital resources.
Similarly, though DRM has opened up closed system restrictions, the disci-
pline still lacks well-defined policies and models. Also, current rights expres-
sion languages cannot express transaction-level controls including mutability
and continuity aspects. Today’s DRM technology requires well-defined policies
and models that can express usage decisions more comprehensively and can
cover sensitive information protection as well as IPR protection. Access con-
trol and trust management require enlargement of their scope to enable richer,
finer, and persistent controls on digital objects regardless of their locations.
Furthermore, none of these approaches adequately address privacy issues.

UCON is a conceptual framework that covers these areas in a systematic
manner to provide a general-purpose, unified framework for protecting digi-
tal resources. UCON is not a substitute for traditional access control, trust
management, or DRM. Rather, UCON encompasses these three areas and goes
beyond in its definition and scope. Also, UCON achieves fine-grained control
on digital resources even after the objects have been disseminated. In this pa-
per, we introduce the UCONABC (Authorizations, oBligations, and Conditions)
model family as a core model for UCON that covers these aspects in a sin-
gle framework systematically and comprehensively. We believe the UCONABC
model of UCON lays the foundation for both next generation access controls and
trustworthy DRM. Section 2 discusses characteristics of UCON and its scope.
Section 3 and 4 identifies core components of the UCONABC model and devel-
ops a family of detailed models. In Section 5, we show how traditional access
control, trust management, and DRM can be achieved in the UCONABC model.
Then, we discuss administrative aspects of UCON, some UCON examples, and
other related issues in Section 6. Section 7 discusses related work, and Section 8
gives our conclusions.

2. USAGE CONTROL

The goal of UCON is to provide a new intellectual foundation for access con-
trol. As discussed above, the 30-year-old framework of the access matrix has
been extended in various different directions as researchers have found it to be
inadequate for their needs. The net result is a plethora of seemingly ad hoc ex-
tensions without underlying intellectual unity. In this paper, we propose a fresh
look at the fundamental nature of UCON itself. Because we are fundamentally
rethinking and extending the essential nature of access control we coin the term
UCON to convey the broader perspective we are taking. The notion of UCON
has been introduced in our previous paper [Park and Sandhu 2002]. The con-
cept of UCON is comprehensive enough to encompass traditional access control,
trust management, and DRM. UCON unifies these areas systematically in a
single framework and goes beyond in its scope. Figure 1 shows UCON’s coverage
and its relationships to other research areas. In terms of objectives, sensitive
information protection has been one of the most important goals of traditional
access control. Recent studies on controlling usages of digital resources have
focused on other goals as well, such as IPR protection, and privacy protection.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 133

Fig. 1. UCON coverage.

Controlling usage of sensitive information requires protection of digital infor-
mation that may be critical to nations or organizations. Intelligence community
and B2B transaction are good examples for this purpose. IPR protection or dig-
ital copyrights protection is relatively a new goal. Content providers’ interest
largely belongs here so they can realize maximum revenue. Privacy has been
rarely studied in the context of controlling usage of digital information, but
is beginning to get more public attention. W3C’s recent P3P project is one ex-
ample for privacy support in Web services [P3P 2002]. Healthcare information
system is another good example that should consider privacy as a major con-
cern. UCON is objective-neutral and covers all these purposes in a systematic
way.

The term UCON has a couple of connotations. In the DRM context it con-
veys the sense that digital content is provided for use on the end-user’s system,
but the provider would like to retain some control over what the user does with
the bits. In the privacy context the situation is reversed. It is the end-user who
often provides personal information to a service provider, and would like to con-
trol how the service provider can use that information. Sometimes the personal
information is provided by a third-party originator, say a healthcare provider,
but the individual, called ‘identifiee,’ to whom it pertains would nevertheless
like to exercise some control over its use. Usage also has a connotation of du-
ration, so the access may continue for some time. In classic access control the
usual viewpoint is that access is enforced before access is granted and then
access persists for some duration without any further checks. This is appro-
priate for traditional access control systems, but does not reflect many modern
e-business cases.

In UCON, target objects have relationships with consumer, provider, and
identifiee subjects. The consumer subject seeks access to a target object provided
by a provider subject. The target object may contain privacy-related information
of subjects. These subjects are called identifiee subjects and hold certain rights
on the object. Usage decision is based on relationships among these different

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

134 • J. Park and R. Sandhu

subject parties on target resources. Ideally, these relationships may no longer
be one-way control decisions which is the usual case today where provider deter-
mines consumer’s access. Having multi-way control requires active involvement
of each of these three parties in decision-making process. While this may be an
ideal approach of UCON, this paper is a first step in this arena and only covers
core aspects of UCON without considering relationships among different par-
ties or multi-way controls. The core part of UCON deals with decision-making
aspects of consumer subject usages. In this paper, we introduce the UCONABC
model as a core model of UCON. The UCONABC model mainly discusses basic
control issues of consumer subjects’ usage on target objects and does not cover
any issues of the relationships among different subject parties nor related ad-
ministrative issues.

Traditionally, access control has dealt with authorizations as the basis for
its decision-making process. In the UCONABC model, the authorization-based
decision process utilizes subject attributes and object attributes. Attributes can
be identities, security labels, properties, capabilities, and so on. The UCONABC
model includes obligations and conditions as well as authorizations as part of
usage decision process to provide a richer and finer decision capability. The
necessity of obligations and conditions has been recognized in modern business
systems such as B2C mass distribution systems as well as B2B transactions
and interactions between business partners. Obligations are requirements that
have to be fulfilled for usage allowance. Conditions are environmental or system
requirements that are independent from individual subjects and objects. These
decision predicates can be evaluated before or during exercise of a request. In
addition, usage of target object may require certain updates on subject or object
attributes before, during or after a usage exercise (e.g., reducing a requester’s
account balance by the value of an e-book). UCON covers these issues within
its UCONABC core model in a systematic manner.

In architectural point of view, traditional access controls have focused on
server-side controls only, hence barely considered client-side controls, which
gives an ability to control usages persistently even after the digital resources
are distributed. The UCONABC model can be utilized in both server-side and
client-side control architectures though some functional details are likely to be
different. Client-side control requires the existence of client-side trusted com-
puting base and reference monitor. Recent studies on client-side controls include
Palladium and TCPA as mentioned previously. Trustworthiness of client-side
reference monitor is a relative issue and largely dependent on requirements
of business models including privacy issues. The detail of client-side refer-
ence monitor is not discussed in this paper. The main focus of this paper is
on model level discussion and does not consider architectural or mechanistic
details.

3. UCONABC MODEL COMPONENTS

The UCONABC models consist of eight core components (see Figure 2). They
are subjects, subject attributes, objects, object attributes, rights, authoriza-
tions, obligations, and conditions. Authorizations, obligations, and conditions

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 135

Fig. 2. UCONABC model components.

are functional predicates that have to be evaluated for usage decision. Each
predicate can be divided into detailed predicates. Subjects, objects, and rights
can be divided into several detailed components with different perspectives.
Traditional access controls utilize only authorizations for decision process. Obli-
gations and conditions are new concepts that have been discussed recently
to resolve certain shortcomings shown in traditional access controls. These
three decision factors will be used for the development of various detailed
models.

A significant innovation in UCONABC is that subject and object attributes can
be mutable. Mutable attributes are changed as a consequence of access, whereas
immutable attributes can be changed only by administrative action. Policies
requiring limits on the number of accesses by a subject or reduction of account
balance based on access can be easily specified using mutable attributes. More
generally, various kinds of consumable authorizations can be modeled in this
manner. High watermark policies on subject clearance and Chinese Walls can
also be enforced in this way. The introduction of mutable attributes is a critical
differentiator of UCONABC relative to most proposals for enhanced models for
access control. Mutable attributes add further complication to the requirement
for obtaining timely values of attributes from a trusted source, since now the
attributes must also be modifiable in a trusted way.

Recently, Zhang [2004] has suggested an alternate depiction of UCONABC
model components as shown in Figure 3. The two figures basically show the
same UCON components. Figure 3 provides an intuitive depiction with empha-
sis on usage decision process by putting it at the center of the diagram while
Figure 2 focuses on the relations among the components. In Figure 2, usage
decision process is shown as a relationship among subjects, objects, and rights
that requires authorizations, obligations, and conditions. The rest of this paper
continues in context of Figure 2.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

136 • J. Park and R. Sandhu

Fig. 3. UCONABC model components: an alternate view.

3.1 Subjects (S) and Subject Attributes (ATT(S))

A subject is an entity associated with attributes, and holds or exercises certain
rights on objects. For simplicity, a subject in UCON can be regarded as repre-
senting an individual human being. A subject is defined and represented by its
attributes. Subject attributes are properties or capabilities of a subject that can
be used for the usage decision process. A subject may or may not have a unique
identity. If authorization is done with a user’s unique identity, accountability
can be provided. If not, anonymity can be supported. Some attributes such as
prepaid credits, or usage capabilities can be used without unique identity for
anonymous usages or transferable rights. Examples of subject attributes in-
clude identities, group names, roles, memberships, security clearance, and so
on. A group is a set of users who holds same rights as a group. A role is a named
collection of users and relevant permissions [Sandhu et al. 1996]. Groups and
roles may have hierarchical relationships. The general concept of attribute-
based access control is commonplace in the access control literature and as
such this aspect of UCONABC builds upon familiar concepts.1

If an attribute is immutable, it cannot be changed by the user’s activity. Only
administrative actions can change such an attribute. A mutable attribute can
be modified as a side effect of subjects’ access to objects. Many examples of trust
management and DRM are likely to utilize mutable attributes. Some examples
of mutable attributes are credits/capabilities (e.g., $10 worth usage, five times

1Using attributes for access decisions requires a trusted source for the values and their timeliness.
There are many challenges to achieving this. The details of how this would be accomplished is
an important implementation and architectural issue. Nonetheless, in our view it is important to
keep the model separate from these implementation concerns, however important they may be.
Keeping the model separate from implementation is critical to separating concerns and reaching
fundamental understanding of disparate issues [Sandhu 2000]. This viewpoint will be sustained
throughout the paper.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 137

per day, print twice), security clearance with relaxed (weak) or no tranquility,
usage log (e.g., already read portion cannot be read again), and so on.

In UCON, the subjects can be consumer subjects (CS), provider subjects (PS),
or identifiee subjects (IS). Consumer subjects are entities who exercise the rights
to access the objects. An e-book reader, MP3 music listener and even a distrib-
utor of digital objects can be a consumer subject. Provider subjects are entities
who provide an object and hold certain rights on it. Examples of provider sub-
jects include an author of an e-book, a distributor of the book, a primary physi-
cian, and so on. The identifiee subjects are entities who are identified in digital
objects that include their privacy sensitive information. A patient in healthcare
system is an example of an identifiee subject. Although the concept of identifiee
subjects always exists in case of privacy sensitive information, identifiee sub-
jects may or may not be included within UCON systems based on the system
requirements or policies.

3.2 Objects (O) and Object Attributes (ATT(O))

Objects are a set of entities that subjects hold rights on, whereby the subjects
can access or use objects. Objects are also associated with attributes, either by
themselves or together with rights. As for subjects, object attributes include
certain properties that can be used for access decisions. Examples of object at-
tributes that are associated with objects are security labels, ownerships, classes,
and so on. Object classes can be used to categorize objects so authorization can
be done based not only on individual objects but also sets of objects that belong
to same class [Sandhu and Samarati 1994]. Examples of attributes for objects
with rights are values, role permissions, and so on. The values may be used
to define how many credits are required to obtain a certain right on a specific
object. For example, “Harry Potter” e-book together with a ‘read’ right may re-
quire $10 or the book with an additional ‘print’ right may require $15. Object
attributes also can be mutable (e.g., the number of times on each item of music
is played).

In UCON, objects can be either privacy sensitive or privacy nonsensitive.
A privacy sensitive object includes individually identifiable information that
can cause privacy problems if not used properly. An UCON object can be either
original or derivative. The derivative object in UCON is different from that of
other DRM literature. DRM’s derivative objects are more like “reused” or “repro-
duced” objects. In DRM, the term “derivative” means derived (cited, quoted, or
copied) from an original work to create another digital work that includes parts
of the original work. In UCON, however, the derivative object is an object that
is created in consequence of obtaining or exercising rights on an original object.
For example, playing MP3 music file can create usage log information. This
log data file is called a derivative object in UCON. To provide mutual protec-
tion on the rights of all involved subjects (consumer, provider, and/or identifiee
subjects), just like the original object, these derivative objects also have to be
considered as target objects and must hold UCON properties and relations with
other components. Based on their format, objects can be documents (e.g., .doc,
.pdf, .ps), audio (e.g., .mp3, .wav), video (e.g., JPEG, DVD, MPEG), executable

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

138 • J. Park and R. Sandhu

files (e.g., games), and so on. Each may require its own application tools to be
used.

3.3 Rights (R)

Rights are privileges that a subject can hold and exercise on an object. Rights
consist of a set of usage functions that enables a subject’s access to objects.
Rights may or may not have a hierarchy. Like subjects and objects, rights can
also be divided into consumer rights (CR), provider rights (PR), and identifiee
rights (IR). In an access control viewpoint, rights enable access of a subject to an
object in a particular mode, such as read or write. In this sense, the UCONABC
concept of right is essentially similar to the familiar concept of a right in ac-
cess control. However, there is a subtle difference in the UCONABC viewpoint
in which UCONABC does not visualize a right as existing in some access ma-
trix independent of the activity of the subject. Rather the existence of the right
is determined when the access is attempted by the subject.2 The usage deci-
sion functions indicated in Figure 2 make this determination based on subject
attributes, object attributes, authorizations, obligations, and conditions. In gen-
eral, rights include rights for direct use of objects (such as read), delegation of
rights and rights for administering access (such as modify subject and object
attributes that in turn determine access rights). In this paper, we do not con-
sider delegation rights and administrative rights. Rights can be divided into
many functional categories. The two most fundamental rights categories might
be view and modify, possibly augmented with creation and deletion. We can also
distinguish direct access rights that are used by a subject to access an object
from administrative rights that are used to administer access as well manage
the object. The DRM community has published several studies on functional
rights [ContentGuard 2002; Gunter et al. 2001; Iannella 2002], categorizing
them as render rights, transport rights, derivative works rights and utility
rights [Rosenblatt et al. 2002]. More generally, rights can be defined by specific
applications such as credit and debit in an accounting application.

3.4 Authorizations (A)

Authorizations are functional predicates that have to be evaluated for usage
decision and return whether the subject (requester) is allowed to perform the re-
quested rights on the object. Authorizations evaluate subject attributes, object

2One could argue that the access matrix is a conceptual entity and does not exist as such. Nonethe-
less, the traditional position has been that the access matrix is what we are enforcing. The embod-
iment of the access matrix by ACLs, Capabilities or a Access Relation is a means of representing
a sparse data structure efficiently. In actual practice the rights of a subject to an object are of-
ten determined when the access is attempted, for example, the ACL may authorize a group to
read an object, and the subject’s membership in the group is determined by subject’s attributes
at access time. So the UCONABC viewpoint is more accurate with respect to actual practice. The
UCONABC viewpoint has consequences for access review. Predicting which rights will be available
when access is attempted becomes a problem more akin to safety analysis with respect to leakage of
rights [Harrison et al. 1976], than a simple lookup of relevant data structures. The UCONABC view
is more accurate with respect to real-world access control systems where the actual representation
of rights is rarely as straightforward as in the access matrix.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 139

attributes, and requested rights together with a set of authorization rules
for usage decision. Authorizations can be either pre-authorizations (preA) or
ongoing-authorizations (onA). preA is performed before a requested right is ex-
ercised and onA is performed while the right is exercised. onA may be performed
continuously or periodically during the time span of access. In general, most
traditional access control policies including MAC, DAC, RBAC, and Trust Man-
agement (TM) utilize some form of pre-authorization for their decisions. Also,
some DRM decision processes are pre-authorizations. Although rarely imple-
mented, an example of ongoing-authorization would be the continued checking
of revocation status during the exercise of usage. Thereby, usage can be imme-
diately terminated to enforce immediate revocation.

Certain authorizations may require updates on subject attributes and/or ob-
ject attributes. These updates can be either pre, ongoing, or post. Security clear-
ance with high watermark property requires updates before usage is performed.
Metered usage payment requires updates after the usage is ended to calcu-
late current usage time. Using prepaid credits for usage time based metered
payment requires periodic updates of the credits during the access to prevent
overuse.

3.5 oBligations (B)

Obligations are functional predicates that verify mandatory requirements a
subject has to perform before or during a usage exercise. Obligations can be
either pre-obligations (preB) or ongoing-obligations (onB). preB is a predicate
that utilizes some kind of history functions to check if certain activities have
been fulfilled or not and returns either ‘true’ or ‘false.’ A user may have to fill out
some personal information before reading a company’s white paper. Similarly,
a user may have to agree to provide usage log information before listening to
music files. onB is a predicate that has to be satisfied continuously or period-
ically while the allowed rights are in use. A user may have to keep watching
certain advertisements while he has logged in. Obligations may or may not uti-
lize subject or object attributes. Attributes can be used to determine what kind
of obligations are required for usage approval. Obligations may require certain
updates on subject attributes. These updates are likely to affect either current
or future usage decisions. Note that attributes are not used for decision making
with respect to obligations, but only for choosing what obligations apply.

One of the basic assumptions in the UCONABC model is that its decision-
making process is transaction-based. This means that decision predicates are
evaluated upon each usage request and the decision influences usages of that
request. A pre decision predicate decides approval or denial of the request.
An ongoing predicate may revoke or continue to allow current exercise of the
requested usage.3

3Unlike authorizations or conditions, there can be transaction-independent, global obligations
where the obligations influence only future requests and have no affects on the current request
decision. For example, a user may have to fill out monthly evaluation reports for continuous sub-
scription of a digital library, or a user may have to provide usage log information to a provider.
These global obligations have to be fulfilled for future usages in timely manner (either time-based
or event-based). Such global obligations are outside the scope of UCONABC core models.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

140 • J. Park and R. Sandhu

Our obligations are different from duties in that duties are assigned to sub-
jects regardless of the subjects’ requests, and essential for an organization,
whereas our obligations are requirements that have to be fulfilled and checked
before or during the usage of certain rights. Traditional access control has
hardly recognized the obligation concept. Some DRM solutions include obli-
gation functions though many of them implement the obligation functions only
partially or implicitly. The UCONABC model does not include duties. We feel
that including duties within the models will distract our original purpose and
cause unnecessary complexity.

3.6 Conditions (C)

Conditions are environmental or system-oriented decision factors. Condition
predicates evaluate current environmental or system status to check whether
relevant requirements are satisfied or not and return either true or false. Sub-
ject attributes or object attributes can be used to select which condition require-
ments have to be used for a request. However, no attribute is included within
the requirements themselves. Unlike authorizations or obligations, condition
variables cannot be mutable, since conditions are not under direct control of in-
dividual subjects. Evaluation of conditions cannot update any subject or object
attributes. Some examples of condition requirements include current local time
for accessible time period (e.g., business hours), current location for accessible
location checking (e.g., area code, device, CPU-ID), security status of the system
(e.g., normal, high alert, under attack), system load, and so on.

In the UCONABC model, one may separate a device from conditions and con-
sider it as a different component of the model just like other components such
as subjects, objects, and rights. Intuitively, since majority of current computing
systems are quite mobile and network-connected, and digital information is
virtually available anywhere, usage rules can specify allowed devices explicitly
along with subjects, objects, and rights. While this may be true, we prefer to
include device component within conditions, since there are other subject and
object independent factors such as time periods and system load.

Conditions are different from authorizations in that conditions mainly focus
on evaluations of environmental, system-related restrictions that have no di-
rect relationship with subject and object attributes for usage decision (that is,
subject and object attributes are not included within condition requirements
hence not required for usage decision process), whereas authorizations evalu-
ate attributes that are related to subjects (requesters) or requested objects for
usage decision.4

4It should be noted there are some ambiguities as to how specific items should be treated. The
IP address of a client can be viewed as a subject attribute, but can also be viewed as a condition
indicating the location of the client. Whether the IP address is viewed as a subject attribute or a
condition element is a choice that the system architect has to make. Rather than trying to provide
air-tight boundaries between these concepts, we recognize them as somewhat fuzzy. It is generally
true that a rich model will accommodate multiple ways of specifying a given policy. This is no
different in the case of UCONABC.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 141

0 (immutable) 1 (pre-update) 2 (ongoing-update) 3 (post-update)
preA Y Y N Y
onA Y Y Y Y
preB Y Y N Y
onB Y Y Y Y
preC Y N N N
onC Y N N N

Fig. 4. The 16 basic UCONABC models.

4. THE UCONABC FAMILY OF CORE MODELS

All of these components makes for a fairly complex model. Nonetheless, we be-
lieve, the recognition of three distinct factors, authorizations, obligations, and
conditions, along with mutability of attributes and continuity of enforcement is
critical to supporting modern access control requirements. The resulting com-
plexity is appropriate for modern cyberspace. Based on the eight components
discussed above we develop a framework for classifying UCONABC models. We
say these are our core models because, as discussed earlier, they focus on the en-
forcement process and do not include administrative constructs. Also they will
need to be further elaborated for specific applications, as will be discussed later.

Our classification is based on the following three criteria: decision factors
that consist of authorizations, obligations, and conditions, continuity of decision
being either pre or ongoing with respect to the access in question, and mutability
that can allow updates on subject or object attributes at different times. If
all attributes are immutable, no updates are possible as a consequence of the
decision process. This case is denoted as ‘0.’ With mutable attributes, updates
are possible before (pre), during (ongoing), or after (post) the right is exercised,
denoted as ‘1, 2, and 3,’ respectively. Based on these criteria, we enumerate the
model space shown in Figure 4.

Cases that are not likely to be useful in practice are marked as ‘N.’ If decision
factor is ‘pre,’ updates can occur before or after the right is exercised but there
is little reason to have ongoing updates. Without ongoing decision, ongoing
update can only influence decisions on future requests and therefore the
updates can be done after the usage is ended. For example, suppose Alice is a
member of a digital music library. Suppose she has to pay $1/hour of music play.
This example can be handled as a pre-authorization with post update case. Her
usage time is accumulated on her usage log file as each play ends. This case
does not require any updates during the playing of a music track. However, if
decision factor is ‘ongoing,’ updates can happen before, during or after the right
is exercised. These updates are used for current usage decision. This explains
the top four rows of Figure 4. For the bottom two rows the only decision factor is
conditions. Evaluation of conditions cannot update attributes by definition. The
resulting 16 Y’s in Figure 4 define the 16 basic UCONABC models. The UCONA
and UCONB models have 7 Y’s each whereas the UCONC model has only
2 Y’s. In practice, many real-world systems will use some combination of these
models.

Figure 5(a) shows possible combinations of UCONABC models and their re-
lationships. We regard each of A, B, or C to be on equal footing, hence the three

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

142 • J. Park and R. Sandhu

Fig. 5. The UCONABC family of core models.

base models at the bottom. At the next level up we have combinations of two
of these, and further combination of all three. In this way we can succinctly
represent which combination of A, B, and C is being used in a given context.
Each of the UCONA, UCONB, and UCONC models is divided into several cases
as respectively shown in Figures 5 (b), (c), and (d). In totality these comprise
the 16 Y’s of Figure 4. The pre and ongoing cases are regarded as being on
equal footing. The case of mutable attributes (1, 2, and 3) always dominates
immutable attributes (0), but there is no ordering between the 1, 2, and 3 cases.
Figure 5 graphically demonstrates the richness of the model space available in
the UCONABC family.

The UCONABC model definitions do not express the mechanistic details such
as how updates can be enforced. Actual pre-updates may have to be performed
either before the requested rights are exercised (e.g., obtaining a lock for mutual
exclusion) or right after the rights are started (e.g., e-cash decrease) [Ryutov and
Neuman 2001, 2002]. However, we do not include such implementation issues
in our models following our practice of keeping the model and architecture-
mechanism distinct.

In this paper, we are not trying to develop a logical expression language for
the UCONABC model. Rather, while there can be numerous ways of express-
ing the UCONABC model, our focus is to develop comprehensive models for
UCON that can support modern access control requirements as well as DRM
in a single framework and discuss the detailed characteristics of these in a sys-
tematic manner. Many current DRM solutions utilize obligations and conditions
for decision process though they may not define these factors explicitly.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 143

4.1 UCONpreA—pre-Authorizations Models

Authorizations have been considered as the core of access control and exten-
sively discussed since the beginning of access control discipline. Traditionally,
access control research has focused on pre-authorizations in which a usage
decision is made before a requested right is exercised. UCONpreA models uti-
lize these pre-authorizations for their usage decision processes. In UCONpreA
models, an authorization decision process is done before usage is allowed.
There are three detailed models based on mutability variations. UCONpreA0

is immutable pre-authorization model that requires no update. UCONpreA1

is pre-authorization model with an optional pre-update procedure. A pre-
update includes update functions that modify attributes before usage is started.
UCONpreA3

is pre-authorization model with an optional post-update procedure.
A post-update utilizes update functions to modify certain attributes after usage
is terminated.5

The following definitions formalize the UCONpreA models. Although some
definitions are quite similar and the expressions can be reduced to a certain
degree, we explicitly express each of the detail models for completeness of the
models. This is done throughout the model definitions in this paper.

Definition 1. The UCONpreA0
model has the following components:

— S, O, R, ATT(S), ATT(O) and preA (subjects, objects, rights, subject at-
tributes, object attributes, and pre-authorizations respectively);

—allowed(s, o, r)⇒ preA(ATT(s), ATT(o), r).

Definition 2. The UCONpreA1
model is identical to UCONpreA0

except it adds
following pre-update processes:

—preUpdate(ATT(s)), preUpdate(ATT(o)), an optional procedure to perform up-
date operations on ATT(s) and ATT(o), respectively. Note that preUpdate can
include nondeterministic operations.

Definition 3. The UCONpreA3
model is identical to UCONpreA0

except it adds
following post-update processes:

—postUpdate(ATT(s)), postUpdate(ATT(o)), an optional procedure to perform
update operations on ATT(s) and ATT(o), respectively. Note that postUpdate
can include nondeterministic operations.

UCONpreA0
consists of subjects (S), objects (O), rights (R), subject attributes

(ATT(S)), object attributes (ATT(O)), and pre-authorizations (preA). preA is a
functional predicate that utilizes ATT(S), ATT(O), and R for usage decision
making. preA examines usage requests using ATT(S), ATT(O), and R then de-
cides whether the request is allowed or not. We write allowed (s, o, r) to indicate
that subject s is allowed right r to object o. Note that the UCONABC model for-
mulates ‘implies’ connectives rather than ‘if.’ This means that right-hand side
of the connective is not sufficient to allow usages but is necessary. A similar

5Note that the model does not show the detailed enforcement mechanisms of how updates have to
be performed.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

144 • J. Park and R. Sandhu

approach can be found in Bell–LaPadula (BLP) model. In BLP, MAC is formu-
lated as ‘necessary condition’ and used together with DAC to enforce additional
information flow policies [Bell and LaPadula 1973; Sandhu 1993]. Throughout
the models, we formulate ‘necessary condition’ rather than ‘sufficient condition’
so decision process can include other rules that might be necessary for finer and
richer controls.

The meaning of preUpdate(ATT(s)) is that subject attributes are updated.
Exactly what values can be used in computing the update is left unspecified
in the model. These could be subject, object attributes, and other variables.
Similarly for the other update processes in Definitions 2 and 3. Traditional
access controls such as MAC, DAC, and RBAC are likely to belong to UCONpreA0

.
Examples 1 and 2, respectively, show how traditional MAC and DAC can be
realized within UCONpreA0

.

Example 1. MAC policies, UCONpreA0
:

L is a lattice of security labels with dominance relation ≥
clearance : S→ L
classification : O → L
ATT(S) = {clearance}
ATT(O) = {classification}
allowed(s, o, read)⇒ clearance(s) ≥ classification(o)
allowed(s, o, write)⇒ clearance(s) ≤ classification(o)

Example 2. DAC closed policies using ACL with an individual ID,
UCONpreA0

:

N is a set of identity names
id : S→ N , one-to-one mapping
ACL : O → 2N×R

ATT(S) = {id }
ATT(O) = {ACL}
allowed(s, o, r)⇒ (id (s), r) ∈ ACL(o)

In case of MAC, security labels (clearance and classification) are used as
a subject attribute (ATT(S)) and an object attribute (ATT(O)), and Bell–
LaPadula’s security properties (simple and star property) are utilized for pre-
authorizations (preA). Here, if the clearance of subject s dominates the classi-
fication of object o, ‘read’ requests are allowed. Similarly, ‘write’ is allowed if
clearance(s) is dominated by classification(o). In case of DAC example, individ-
ual (or group) identities and ACL are subject attributes and object attributes,
respectively. ACL is a functional mapping of object to multiple ids and rights. If
the subject’s identity name together with the requested right exists in ACL, the
request is allowed. Although it has been understood that ACL and capability
list are used to achieve similar control functionalities, they can actually pro-
vide quite different results when they are used with mutable attributes. This
is discussed in the next section. In RBAC, a user-role and a permission-role
can be considered as a ATT(S) and a ATT(O), respectively, and compared for

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 145

authorizations before allowing access. Details of MAC, DAC, RBAC, and other
related areas to UCONABC model are discussed in the next section. Also, cer-
tain authorization processes of DRM (e.g., membership-based digital library)
can be expressed within UCONpreA0

as follows. We illustrate two examples of
DRM with pre-updates and post-updates, respectively.

Example 3. DRM pay-per-use with a prepaid credit, UCONpreA1
:

M is a set of money amount
credit : S→ M
value : O × R → M
ATT(s) : {credit}
ATT(o, r) : {value}
allowed(s, o, r)⇒ credit(s) ≥ value(o, r)
preUpdate(credit(s)) : credit(s) = credit(s)− value(o, r)

Example 4. DRM membership-based metered payment, UCONpreA3
:

M is a set of money amounts
ID is a set of membership identification numbers
TIME is a current usage minute
member : S→ ID
expense : S→ M
usageT : S→ TIME
value : O × R → M (a cost per minute of r on o)
ATT(s) : {member, expense, usageT}
ATT(o, r) : {valuePerMinute}
allowed(s, o, r)⇒ member(s) 6= φ
postUpdate(expense(s)) : expense(s) = expense(s)+ (value(o, r)× usageT(s))

In Example 3, if the credit of a subject s is not less than the value of the re-
quested usage, the request is allowed. Once the request is allowed, the subject’s
credit is reduced by the value of the usage. Example 4 shows membership-based
usage control with metered payment. In this case, a request is allowed if the
subject is a member. However, a total expense has to be updated at the end of
each usage by using current usage time and value of the usage so it can be paid
periodically.6

UCONpreA1
and UCONpreA3

are unchanged from UCONpreA0
except the addi-

tional update procedures. UCONpreA1
and UCONpreA3

introduce preUpdate and
postUpdate procedures to modify subject attributes and object attributes. Many
B2B and B2C applications require some form of update functionalities. Recent
DRM solutions have also dealt with these. For example, prepaid credits have
to be reduced at the time a user is allowed to exercise requested rights on an
object (UCONpreA1

).

6Enforcement of periodic payment of accumulated expense is not considered as part of the core
UCONABC model since it is not related to a request-based decision process but is part of larger
workflow.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

146 • J. Park and R. Sandhu

4.2 UCONonA—Ongoing-Authorizations Models

In UCONonA model, usage requests are allowed without any ‘pre’ decision-
making. However, authorization decisions are made continuously or repeat-
edly while usage rights are exercised. If certain requirements become dis-
satisfied, the currently allowed usage right is revoked and its exercise is
stopped. Ongoing-authorizations have been seldom discussed in access con-
trol literature. By utilizing ongoing-authorizations, monitoring is actively in-
volved in usage decisions while a requested right is exercised. This kind of
continuous control is especially useful for relatively long-lived usage rights. In
UCONonA, we develop four detailed models. UCONonA0 is immutable ongoing-
authorization model that has no update procedure included. UCONonA1 is
ongoing-authorization model with pre-updates. UCONonA2 and UCONonA3 in-
clude ongoing updates and post updates, respectively.

The following definitions formalize the UCONonA models.

Definition 4. The UCONonA0 model has the following components:

— S, O, R, ATT(S), and ATT(O) are not changed from UCONpreA;
—onA (ongoing-authorizations);
—allowed(s, o, r)⇒ true;
—stopped(s, o, r)⇐ ¬onA(ATT(s), ATT(o), r).

Definition 5. The UCONonA1 model is identical to UCONonA0 except it adds
following pre-update processes:

—preUpdate(ATT(s)), preUpdate(ATT(o)), an optional procedure to perform up-
date operations on ATT(s) and ATT(o), respectively.

Definition 6. The UCONonA2 model is identical to UCONonA0 except it adds
following ongoing-update processes:

—onUpdate(ATT(s)), onUpdate(ATT(o)), an optional procedure to perform up-
date operations on ATT(s) and ATT(o), respectively.

Definition 7. The UCONonA3 model is identical to UCONonA0 except it adds
following post-update processes:

—postUpdate(ATT(s)), postUpdate(ATT(o)), an optional procedure to perform
update operations on ATT(s) and ATT(o), respectively.

UCONonA0 model introduces onA predicate instead of preA. Since there is no
pre-authorization, the requested access is always allowed. However, ongoing-
authorizations are active throughout the usage of the requested right, and
certain requirements are repeatedly checked for continuous access. Seman-
tically, these requirements have to be true all the time while the right is exer-
cised. Technically, these checking processes are likely to be performed periodi-
cally based on time or event. In the UCONABC model, we do not specify these
technical and implementation details. In case certain attributes are changed
and requirements are no longer satisfied, stopped procedure is performed. We
write ‘stopped(s, o, r)’ to indicate rights r of subject s to object o is revoked.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 147

In many cases, ongoing-authorizations are likely to occur together with pre-
authorizations though UCONABC model does not require this. For example,
suppose onA screens certain certificate revocation lists periodically to check
whether the user’s identity certificate is revoked or not. While this is a case of
ongoing authorizations, this makes sense only when the certificate has already
been evaluated at the time of the request. This can be an example of UCONonA0

model. UCONonA1 , UCONonA2, and UCONonA3 are unchanged from UCONonA0

but add pre-updates, ongoing-update, and post-update procedures, respectively.
Some examples of UCONonA models are given below.

Example 5. A limited number of simultaneous usages, revocation using
usage start time, UCONonA13 :

T is an ordered set of current usage start times
UN is a set of concurrent usage numbers
N is a set of identification names
id : S→ N
usageNum : O → UN
startT : O → 2N×T

ATT(s) : {id }
ATT(o) : {startT, usageNum}
allowed(s, o, r)⇒ true
stopped(s, o, r)⇐ (usageNum(o) > 10) ∧

(id(s), t) ∈ startT(o) where t = min{t ′|∃s′, (id (s′), t ′) ∈ startT(o)}
preUpdate(startT(o)) : startT(o) = startT(o)∪ {(id(s), t)}, where s is currently

requesting subject of usage
preUpdate(usageNum(o)) : usageNum(o) = usageNum(o)+ 1
postUpdate(startT(o)) : startT(o) = startT(o)−{(id(s), t)}, where s is a subject

of stopped usage
postUpdate(usageNum(o)) : usageNum(o) = usageNum(o)− 1

Example 6. A limited number of simultaneous usages, revocation using
longest idle time, UCONonA123 :

T is an ordered set of last activity times
UN is a set of concurrent usage numbers
N is a set of identification names
id : S→ N
usageNum : O → U N
lastActiveT : O → 2N×T

ATT(s) : {id }
ATT(o) : {lastActiveT, usageNum}
allowed(s, o, r)⇒ true
stopped(s, o, r)⇐ (usageNum(o) > 10)∧

(id (s), t) ∈ lastActiveT(o) where t = min{t ′|∃s′, (id (s′), t ′) ∈ lastActiveT(o)}
preUpdate(usageNum(o)) : usageNum(o) = usageNum(o)+ 1
onUpdate(lastActiveT(o)), repeated updates on lastActiveT(o)
postUpdate(usageNum(o)) : usageNum(o) = usageNum(o)− 1.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

148 • J. Park and R. Sandhu

Example 7. A limited number of simultaneous usages, revocation using
total usage time, UCONonA13 :

T is an ordered set of current usage times
TT is an ordered set of total usage times
UN is a set of concurrent usage numbers
N is a set of identification names
id : S→ N
totalT : O → 2N×T T , A functional mapping of object to a set of total usage

times of active subjects
usageNum : O → U N
ATT(s) : {id }
ATT(o) : {usageT, totalT, usageNum}
allowed(s, o, r)⇒ true
stopped(s, o, r)⇐ (usageNum(o) > 10) ∧

(id (s), tt) ∈ totalT(o) where tt = max{tt ′|∃s′, (id (s′), tt ′) ∈ totalT(o)}
preUpdate(usageNum(o)) : usageNum(o) = usageNum(o)+ 1
postUpdate(usageNum(o)) : usageNum(o) = usageNum(o)− 1
postUpdate(totalT(o)) : (id (s), tt) = (id (s), tt + t), where s is a subject of

stopped usage and t is current usage time of the s

In Example 5, suppose only 10 users can access an object o1 simultaneously.
If a 11th user requests access, the user with the earliest time is terminated.
In this case, the 11th user is allowed without any pre-authorization decision
process. However, onA monitors the number of current usages on o1 (ATT(o1))
determines which was the earliest to start, and terminates it. Here, starting
time of each request has to be added before the beginning of the requested
usage and has to be taken out after the usage is stopped. Also current usage
number of o1 is increased by 1 at the time of access and decreased by 1 at
the end of the access, hence a UCONonA13 model. Suppose the extra user in
the above example is revoked based on longest idle time. Monitoring idle time
requires ongoing updates of a last activity attribute as shown in Example 6.
Further, suppose that revocation of the extra user is based on total usage time
in completed sessions since the start of the fiscal year. Post-updates would be
needed to accumulate current usage time as shown in Example 7.

4.3 UCONpreB—pre-oBligations Models

UCONpreB introduces pre-obligations that have to be fulfilled at the time of a
request and before access is allowed. preB is a kind of history function that
checks whether certain obligations have been fulfilled or not and return true
or false for the usage decision. Suppose a user has to provide his name and
email address to download a company’s white papers, or suppose a user has
to click ‘Accept’ on a license agreement to access a web portal. Here, the user
has to fulfill the required actions before access is allowed. UCONpreB models
consist of 2 steps. First step is to select required obligation elements for the
requested usage. This selection may utilize subject and/or object attributes.
Second step is to evaluate whether the selected obligation elements have been

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 149

fulfilled without any error (e.g., invalid e-mail addresses). In UCONpreB models,
a request may require multiple pre-obligation elements to be fulfilled. The preB
predicate evaluates if all the required pre-obligation elements (preOBL) are
fulfilled by using preFulfilled and returns either true or false.

The following definitions formalize the UCONpreB models.

Definition 8. The UCONpreB0
model has the following components:

— S, O, R, ATT(S), and ATT(O) are not changed from UCONpreA;
—OBS, OBO, and OB, (obligation subjects, obligation objects, and obligation

actions, respectively);
—preB and preOBL (pre-obligation predicates and pre-obligation elements, re-

spectively);
—preOBL ⊆ OBS×OBO×OB;
—preFulfilled : OBS×OBO×OB→ {true, false};
—getPreOBL : S × O × R → 2preOBL, a function to select pre-obligations for a

requested usage;
—preB(s, o, r) =∧(obsi ,oboi ,obi)∈getPreOBL(s,o,r) preFulfilled(obsi, oboi, obi);

preB(s, o, r) = true by definition if getPreOBL(s, o, r) = φ;
—allowed(s, o, r)⇒ preB(s, o, r).

Definition 9. The UCONpreB1
model is identical to UCONpreB0

except it adds
following pre-update processes:

—preUpdate(ATT(s)), preUpdate(ATT(o)): an optional procedure to change cer-
tain attributes as a consequence of pre-obligations.

Definition 10. The UCONpreB3 model is identical to UCONpreB0
except it

adds following post-update processes:

—postUpdate(ATT(s)), postUpdate(ATT(o)): an optional procedure to change
certain attributes as a consequence of pre-obligations.

Decisions on what kind of obligations are required for requests (getPreOBL)
are rather complicated and have various patterns. Subject or object attributes
may or may not be used for the decisions. If no attribute is used, a user is likely
to be required to fulfill same obligations at each request. For example, without
a subject attribute, we cannot recognize previous users who have previously
provided name and email address. We therefore have to ask for same obliga-
tions again. Selection of required obligation elements can be based on subject
attributes only, object attributes only, both subject and object attributes, rights
only, or all three of subject attributes, object attributes, and rights. Suppose
a subject has to read a license agreement and click Accept button before he
exercises any rights on Web Services, or suppose a subject has to provide his
personal information (age, gender, organization, e-mail address, etc.) to down-
load a company’s white paper. The first obligation case can be decided based on
target objects regardless of subject attributes or rights. The second one can be
based on object attributes and rights. In Web Services example, suppose mem-
bers have to report a monthly usage history, and guests have to provide their

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

150 • J. Park and R. Sandhu

names and e-mail addresses. These obligations are decided based on subject at-
tributes. Again with the Web Service example, suppose guests who only want to
surf (read) contents have to provide name and e-mail address, and who want to
participate and write some messages on discussion board have to provide their
unique ID number such as a Social Security Number for accountability. These
obligations are determined based on rights.

Obligation elements consist of OBS, OBO, and OB. The entity (obs) who has
to perform obligation may or may not be the same subject as the requester (s).
For example, to be a member of a Web community, children may need parents’
agreements. In this case, the parents (obs) are different entities from the child
(s) who wants to be a member. The entity (obo) on which the obligation has to be
performed can be either a constant or a function of the subject attributes, object
attributes and/or rights. Suppose whoever wants to access a digital library
has to provide name and address. Here, name and address (obo) is a constant
regardless of subject attributes, object attributes and rights. If a nonmember
has to provide something different from what a member has to provide, we
can say obo is different for different subject attributes. Similarly, what has to
be performed (ob) can be either a constant or a function of obo. For example,
suppose Alice has to read and agree a license agreement for certain services by
clicking ‘yes’ button. Here, the ob is always the ‘click’ action because the obo is
the license agreement.

The UCONABC model does not specify these details. Rather, we use an ab-
stract function called ‘getPreOBL’ to obtain required obligations leaving the
detail and internal decision functions as an implementation decision. After all,
it can be said that obligations are decided based on requests that consist of s, o,
and r. Some examples are given below.

Example 8. A license agreement obligation, every time (without attribute),
UCONpreB0

:

OBS = S
OBO = {license agreement}
OB = {agree}
getPreOBL(s, o, r) = {(s, license agreement, agree)}
allowed(s, o, r)⇒ preFulfilled(s, license agreement, agree)

Example 9. High or low license agreements for high/low objects (with
object attributes), UCONpreB0

:

OBS = S
OBO = {high license agreement, low license agreement}
OB = {agree}
level : O → {high, low}
ATT(o) = {level}
getPreOBL(s, o, r) =

{
(s, high license agreement, agree), if level(o) =‘high’;
(s, low license agreement, agree), if level(o) =‘low’.

allowed(s, o, r)⇒ preFulfilled(getPreOBL(s, o, r))

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 151

Example 10. Selective license agreements for first time users only,
UCONpreB1

:

OBS = S
OBO = {license agreement}
OB = {agree}
registered : S→ {yes, no}
ATT(s) = {registered}
getPreOBL(s, o, r) =

{
(s, license agreement, agree), if registered(s) =‘no’;
φ, if registered(s) =‘yes’.

allowed(s, o, r)⇒ preFulfilled(getPreOBL(s, o, r))
preUpdate(registered(s)) : registered(s) = yes

In Example 8, a license agreement is required from every request regardless
of the user’s previous agreements. This example does not require any subject
and object attributes. Suppose a Web service requires a license agreement. In
this case, obs is same as s and obo and ob are constants. We can extend this case
to require different obligations for different object attributes or different subject
attributes. Example 9 shows a case that requires two different license agree-
ments for high and low objects. Note that these attributes are used for obtaining
required obligations not for making usage decisions. Example 10 requires a li-
cense agreement only once. To do this, a subject attribute called ‘registered’ is
used. Once a user has agreed on a license agreement, the user is registered
(preUpdate) for future requests. Still, this attribute is not directly used for au-
thorizations. To be an authorization model, this attribute has to influence usage
decision. No UCONpreB3

example is shown in this paper. However, we can easily
modify Example 10 to include post-updates. If a user has to agree on a licence
agreement at every 5 h of accumulated usage, the total usage time has to be
updated at the end of each usage for future requests.

4.4 UCONonB—Ongoing-oBligations Models

UCONonB models are similar to UCONpreB models except that obligations have
to be fulfilled while rights are exercised. Ongoing-obligations may have to be
fulfilled periodically or continuously. For this, we introduce a time parameter
T as part of obligation elements onOBL. Here, T is likely to define certain time
intervals that are either time-based or event-based. For example, a user may
have to click an advertisement within every 30-minute interval or within every
20 Web pages accessed, or a user may have to keep an advertisement window
active all the time. Note that our concern is about when users have to ful-
fill obligations, not when a system actually checks the fulfillments. The model
assumes that onB has to be true all the time though actual obligation verifi-
cation intervals can vary. In UCONonB models, there are four detailed models
based on mutability issues. UCONonB0 includes ongoing-obligations predicate
instead of pre-obligations predicate. UCONonB1, UCONonB2 , and UCONonB3 are
same as UCONonB0 except that they add pre-updates, ongoing-updates, and
post-updates, respectively.

The following definitions formalize the UCONonB models.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

152 • J. Park and R. Sandhu

Definition 11. The UCONonB0 model has the following components:

— S, O, R, ATT(S), ATT(O), OBS, OBO, and OB are not changed from
UCONpreB;

— T , a set of time or event elements;
—onB and onOBL (ongoing-obligations predicates and ongoing-obligation ele-

ments, respectively);
—onOBL ⊆ OBS×OBO×OB× T ;
—getOnOBL : S×O× R → 2onOBL, a function to select ongoing-obligations for

a requested usage;
—onFulfilled : OBS×OBO×OB× T → {true, false};
—onB(s, o, r) =∧(obsi ,oboi ,obi ,ti)∈getOnOBL(s,o,r) onFulfilled(obsi, oboi, obi, ti);
—onB(s, o, r) = true by definition if getOnOBL(s, o, r) = φ;
—allowed(s, o, r)⇒ true;
—stopped(s, o, r)⇐ ¬onB(s, o, r).

Definition 12. The UCONonB1 model is identical to UCONonB0 except it adds
following pre-update processes:

—preUpdate(ATT(s)), preUpdate(ATT(o)): an optional procedure to change cer-
tain attributes as a consequence of pre-obligations.

Definition 13. The UCONonB2 model is identical to UCONonB0 except it adds
following ongoing-update processes:

—onUpdate(ATT(s)), onUpdate(ATT(o)): an optional procedure to change cer-
tain attributes as a consequence of pre-obligations.

Definition 14. The UCONonB3 model is identical to UCONonB0 except it adds
following post-update processes:

—postUpdate(ATT(s)), postUpdate(ATT(o)): an optional procedure to change
certain attributes as a consequence of pre-obligations.

Example 11 shows a simple example for UCONonB0.

Example 11. Watch advertisement windows while s exercise r, UCONonB0 :

OBS = S
OBO = {ad window}
OB = {keep active}
T = {always}
getOnOBL(s, o, r) = {(s, ad window, keep active, always)}
allowed(s, o, r)⇒ true
stopped(s, o, r)⇐ ¬onFulfilled(s, ad window, keep active, always)

Here, there is only one ongoing-obligation is required. Suppose a free Inter-
net service provider requires users to watch an advertisement while they are
connected to the server. In this case, there is no requirement that has to be

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 153

completed before using the service. As long as the advertisement window is ac-
tive, the usage is allowed. Again how frequently the system checks the status of
the advertisement window is not considered. Although examples for UCONonB1,
UCONonB2 , and UCONonB3 are not shown here, they can be developed without
much effort. For example, consider free Internet Services. Suppose every user
has to watch ad for first 10 min of connection to Internet, but every 10th user
has to watch ad for 20 min. Here every time a user connect Internet, usage num-
ber has to be increased or reset to 0 at the beginning of access to decide which
ongoing-obligation has to be fulfilled. This is an example of UCONonB1. Suppose
a user has to click an advertisement within every 30 min. Here a last click time
has to be updated throughout usage. This is an example of UCONonB2 . Further,
suppose a user has to watch advertisement after first 10 h every month. Here,
current connection time has to be accumulated at the end of each connection.
This is an example of UCONonB3 .

4.5 UCONpreC—pre-Conditions Model

As described earlier, conditions define certain environmental restrictions that
have to be satisfied for usages. In general, preCON includes certain environ-
mental restrictions that are not directly related to subjects and objects. Current
environmental or system-oriented status is retrieved each time a condition is
evaluated. By utilizing conditions in usage decision process, UCONC can pro-
vide finer-grained controls on usages. Unlike authorization and obligation mod-
els, condition models cannot be mutable. Note that this is different from the fact
that the value of conditional status can be changed as the environmental situ-
ation is being changed (e.g., current time is changed as time goes, or a wireless
access point is changed as a user moves around a building). Although subject
or object attributes are not used for usage decision process, they can be used to
decide what kind of condition elements (preCON) have to be enforced for usage
decision. UCONpreC introduces pre-conditions predicate (preC) that has to be
evaluated before requested rights are exercised.

The following definitions formalize the UCONpreC model.

Definition 15. The UCONpreC0
model has the following components:

— S, O, R, ATT(S), and ATT(O) are not changed from UCONpreA;
—preCON (a set of pre-conditions elements);
—getPreCON : S × O × R → 2preCON;
—preConChecked : preCON→ {true, false};
—preC(s, o, r) =∧preConi∈getPreCON(s,o,r) preConChecked(preConi)
—allowed(s, o, r)⇒ preC(s, o, r).

In UCONpreC0
, preC is utilized in usage decision process along with S, O, and

R. A set of relevant condition elements preCON is selected based on a request
possibly using subject or object attributes. To allow a request, all of the selected
condition restrictions have to be evaluated (preC). For example, suppose there
are requirements to restrict locations where usages can be exercised. Checking a

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

154 • J. Park and R. Sandhu

CPU-id or an IP address before a usage allowance is an example of UCONpreC0
.

Example 12 checks the current location of a user at the time of a request.
Allowed locations for student and faculty can be different and have to be selected
accordingly. This example assumes either there is no location change while the
request is exercised or there is no restriction of location changes during the
usages once the original location has been approved.

Example 12. Location limitation, UCONpreC0
:

studentAREA, facultyAREA (allowed area codes for student and faculty)
curArea is a current rendering device’s area code
ATT(s) = {member}
preCON = {(curArea ∈ studentAREA), (curArea ∈ facultyAREA)}

getPreCON(s, o, r) =
{

(curArea ∈ studentAREA), if member(s) =‘student’;
(curArea ∈ facultyAREA), if member(s) =‘faculty’.

allowed(s, o, r)⇒ preConChecked(getPreCON(s, o, r))

4.6 UCONonC—Ongoing-Conditions Model

In many cases, environmental restrictions have to be satisfied while rights are
in active use. This could be supported within UCONonC model. In UCONonC,
usages are allowed without any decision process at the time of requests. How-
ever, there is an ongoing-conditions predicate to check certain environmental
status repeatedly throughout the usages. As mentioned earlier, the UCONonC0

model is intrinsically immutable.
The following definitions formalize the UCONonC model.

Definition 16. The UCONonC0 model has the following components:

— S, O, R, ATT(S), and ATT(O) are not changed from UCONpreA;
—onCON (a set of ongoing-conditions elements);
—getOnCON : S × O × R → 2onCON;
—onConChecked : onCO N → {true, false};
—onC(s, o, r) =∧onConi∈getOnCON(s,o,r) onConChecked(onConi)
—allowed(s, o, r)⇒ true;
—stopped(s, o, r)⇐ ¬onC(s, o, r).

The UCONonC0 model introduces an ongoing-conditions predicate (onC) for
monitoring selected condition elements (getOnCON(s, o, r)). If any current en-
vironmental status violates any of the restrictions, the allowed right is revoked
and the exercise is stopped. In Example 13 below, allowed time period limita-
tion is required throughout usage exercises. For example, suppose a day-time
user can access objects during day time (say 8 a.m. to 4 p.m.), and a night-shift
user can access objects during night time (say 4 p.m. to 12 p.m.). Note that,
currentT is a current status (time) of local time, not an attribute of subject or

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 155

object. Here, currentT is evaluated throughout the usage and if its value is no
longer within the allowed period, the usage is stopped. This example is likely to
use both pre-condition and ongoing-condition since current time is also likely
to be checked at the time of request, hence a combined model UCONpreC0onC0 .

Example 13. Time limitation, UCONpreC0onC0 :

dayH, nightH (day-shift and night-shift office hours, mutually exclusive)
currentT is current time
preCON : {(currentT ∈ day H), (currentT ∈ nightH)}

onCON : {(currentT ∈ dayH), (currentT ∈ nightH)}

getPreCON(s, o, r) =
{

(currentT ∈ dayH), if shift(s) =‘day’;
(currentT ∈ nightH), if shift(s) =‘night’.

getOnCON(s, o, r) =
{

(currentT ∈ dayH), if shift(s) =‘day’;
(currentT ∈ nightH), if shift(s) =‘night’.

allowed(s, o, r)⇒ preConChecked(getPreCON(s, o, r))
stopped(s, o, r)⇐ ¬onConChecked(getOnCON(s, o, r))

4.7 Global Obligations

In UCONABC model, obligations are used for usage decision of current request.
However, there are other cases where the evaluation of obligations’ fulfillment
is postponed for some time and used for future usage decision rather than us-
age decision of current request. Suppose a member has to pay monthly metered
payment for continuous music services. Though total usage time has to be up-
dated at each service, this does not influence usage decision of service requests
until the payment due.

This kind of obligation is called global obligation and does not fit into the
UCONABC model structure though it is also an important aspect in usage con-
trol. UCON considers these global obligations as an exceptional case of UCON
obligation models. Global obligations are unique in their characteristics. Like
other obligations, they have to be fulfilled by obligation subjects. However, they
do not affect any usage decisions on the originated requests. Rather, what they
can do is to influence future requests. Although certain updates can be required
for global obligations, these updates do not influence any decision for current
usages. Since there is no influence on decision-making for current usages, this
feature cannot belong to UCONB0, hence cannot belong to UCONB1, UCONB2,
or UCONB3. Note that the actual updates still can happen either before, during,
or after the usages. In case of an update after usage, unlike post-update, it does
not have to be done right after the end of usage. For example, a user may have
to fulfill usage log report at the end of each usage, each day, or each month.
Monthly metered payment, or monthly subscription payment are also exam-
ples of global obligations. The actual influence on decision making is postponed
to certain point. These global obligations are independent from the originated
usage transactions and have impact only on future decisions.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

156 • J. Park and R. Sandhu

5. APPLICATIONS OF UCONABC MODEL

UCON encompasses traditional access controls, trust management, and DRM
and goes further in its definition and the scope. In this section, we show how
MAC, DAC, RBAC, trust management, and DRM can be realized within the
UCONABC model. We further discuss some possible extensions of these poli-
cies for better understanding of their characteristics and richer controls. Most
traditional access controls and trust management can be realized by using
UCONpreA0

model. Some extensions may require UCONpreA1
model. Ongoing-

decisions are rarely discussed in literature. Mutability issues are not common
in previous work. Most of the research that deals with continuity or mutability
issues still lack systematic perspective and comprehensiveness, being narrowly
focused. Discussions on some of this prior work in terms of the UCONABC model
provides solid evidence of comprehensiveness and richness of our models. We
also show some healthcare system examples that require obligations, condi-
tions, as well as authorizations.

5.1 Mandatory Access Control

In MAC, security labels are used for usage decisions. In UCON point of view,
clearance is a subject attribute and classification is an object attribute. These
security labels of subjects and objects are compared to enforce simple security
property (no read up) and star property (no write down). Example 1 shows this
MAC policy using the UCONpreA0

model.
Traditional access controls have rarely supported an update property. In

MAC, strong tranquility property, which belongs to our immutable authoriza-
tions, is normally assumed. In other words, security labels of subjects and
objects cannot be changed by users’ actions. Only administrative actions can
change the labels. With a weak tranquility property, security labels can be
changed by users’ autonomous actions but only without violating defined se-
curity policies. This has been known as a high watermark property. Example
14 shows this high watermark property of BLP as an example of UCONpreA1

.
Here, a subject always start with the lowest possible clearance label. The
clearance of the subject is raised to higher labels until it reaches its maxi-
mum label as the subject accesses higher objects. LUB denotes least upper
bound.

Example 14. MAC policies with high watermark property, UCONpreA1
:

L is a lattice of security labels with dominance relation ≥
clearance : S→ L
maxClearance : S→ L
classification : O → L
ATT(S) = {clearance, maxClearance}
ATT(O) = {classification}
allowed(s, o, read)⇒ maxClearance(s) ≥ classification(o)
preUpdate(clearance(s)) : clearance(s) = LUB(clearance(s), classification(o))

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 157

5.2 Role-Based Access Control

The UCONpreA0
model also can support RBAC in its authorization process.

In RBAC96 model [Sandhu et al. 1996], a role is a collection of users and a
collection of permissions. The permission is a collection of object-right pairs.
In UCONpreA0

, user-role assignment can be viewed as subject attributes and
permission-role assignment as attributes of object and rights. Example 15
shows how RBAC1 can be viewed in our UCONABC models. RBAC1 includes
hierarchy in its definition. Only activated roles are used for authorization deci-
sion. Here, if there exists an active role (actRole(s)) that dominates any of the
permission roles (Prole(o, r)), a request is allowed. Examples 16 and 17 shows
examples that include high watermark property. Example 16 does not have a
role hierarchy while Example 17 does. In both cases, active roles are updated
if other than currently active roles are required for a request. Since the role
hierarchy is not a lattice (so LUB is not always defined), Example 17 also has
a selection issue. Having an automated high watermark property in RBAC
eliminates the least privilege principle that is supported in original models.7 It
also causes a selection problem in case there are multiple roles available for a
request. In Example 17, ‘UB’ denotes upper bounds.

Example 15. RBAC1 with activation, UCONpreA0
:

P = {(o, r)}
ROLE is a partially ordered set of roles with dominance relation ≥
actRole : S→ 2ROLE

Prole : P → 2ROLE

ATT(S) = {actRole}
ATT(O) = {Prole}
allowed(s, o, r)⇒ ∃role ∈ actRole(s), ∃role′ ∈ Prole(o, r), role ≥ role′

Example 16. RBAC0 with high watermark property, UCONpreA1
:

P = {(o, r)}
ROLE is an unordered set of roles
srole : S→ 2ROLE

prole : P → 2ROLE

actRole : S→ 2ROLE

ATT(S) = {srole, actRole}
ATT(O) = {prole}
allowed(s, o, r)⇒ srole(s) ∩ prole(o, r) 6= φ
preUpdate(actRole(s)) : actRole(s) ={

actRole(s), if actRole(s) ∩ Prole(o, r) 6= φ;
actRole(s) ∪ λ(srole(s) ∩ prole(o, r)), if actRole(s) ∩ Prole(o, r) = φ,
where λ is a nondeterministic selection function of an element from a
set.

7Least Privilege can be supported if role activation is done manually by users.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

158 • J. Park and R. Sandhu

Example 17. RBAC1 with high watermark property, UCONpreA1
:

P = {(o, r)}
ROLE is a partially ordered set of roles with dominance relation ≥
srole : S→ 2ROLE

prole : P → 2ROLE

actRole : S→ 2ROLE

ATT(S) = {srole, actRole}
ATT(O) = {prole}
ROLE = {role | ∃role′ ∈ srole(s), ∃role′′ ∈ prole(o, r), role′ ≥ role ≥ role′′}˜ROLE = {role | ∃role′ ∈ actRole(s), ∃role′′ ∈ prole(o, r), role′ ≥ role ≥ role′′}̂ROLE = {role | ∃role′ ∈ actRole(s), ∃role′′ ∈ prole(o, r), role ∈ ROLE,

role ∈ UB(role′, role′′)}
allowed(s, o, r)⇒ ROLE 6= φ
preUpdate(actRole(s)) :

actRole(s) =
{

actRole(s), if ˜ROLE 6= φ;
actRole(s) ∪ λ(̂ROLE), if ˜ROLE = φ,

where λ is a nondeterministic selection function of an element from a
set.

5.3 Discretionary Access Control

DAC also can be supported in UCONpreA. DAC policies govern the access of
users to an object based on individual or group identities of users and objects.
The access modes such as read, write, or execute are granted to a user if the user
has privilege to use a specific access mode on an object. Traditionally, access
matrix has been realized by using either ACL or capability list. In UCONpreA,
DAC can be expressed by using either ACLs or capability lists as shown be-
low. In many examples, ACLs and capability lists can be used to achieve same
control functions. However in certain cases such as group-based usage number
restrictions, ACLs and capability lists have different control functionalities.
This distinction has been rarely discussed in previous literature.

Examples 18 and 19 utilize ACL and capability list, respectively. In Exam-
ple 18, if any of the subject’s group names is listed in a requested object’s
ACL, the request is allowed. On the other hand, in Example 19, capability
list is used to check whether a subject holds any dominant group ID for the
requested right. Although these two cases seem to accomplish similar func-
tionality, the functional distinction is much clearer when an update procedure
is required. Suppose each group of a subject has a limited number of usage
times. In this case, the available number of a subject’s usage has to be reduced.
To do this we have to select one (or some) of the subject’s group(s) and up-
date the current usage number(s) of the selected subject group(s). Here, the
number of allowed usage count is assigned to each group of subjects so that
the usage can be controlled on a subject group basis. On the other hand, if
capability lists are used, the allowed usage count number is assigned to each
group of objects and the update of the number is controlled on an object group
basis.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 159

Example 18 utilizes ACL and allows multiple group IDs of a subject (assum-
ing no group hierarchy). If one of the subject’s group IDs exists in ACL(o), the
request is allowed. Example 19 utilizes capability lists and includes a hierarchy
of object group IDs. Here, if there exists a object group IDs that is lower than
or equal to a group ID of CL(s), the request is allowed. Example 20 utilizes
capability lists and includes usage count k to limit the number of usages for
each object group. Here, for the sake of simplicity, we assume there is only one
k for each (g , r). In this example, since an object can have multiple group IDs,
an update requires a selection of one group ID among the object’s group IDs.

Example 18. DAC using ACL w/ multiple group ID, UCONpreA0
:

G is a set of groups of subject s
groupId : S→ 2G , many to many mapping
ACL : O → 2G×R , g is authorized to do r to o
ATT(S) : {groupId}
ATT(O) : {ACL}
allowed(s, o, r)⇒ {(g , r) | g ∈ groupId(s)} ∩ ACL(o) 6= φ
Example 19. DAC using Capability List w/ group hierarchy, UCONpreA0

:

G is a partially ordered set of groups of o
groupId : O → 2G

CL : S→ 2G×R , s is authorized to do r to g or lower g ’s
ATT(S) = {CL}
ATT(O) = {groupId}
allowed(s, o, r)⇒ ∃g ∈ groupId(o), ∃(g ′, r) ∈ CL(s), g ≤ g ′

Example 20. DAC using Capability List w/ multiple group IDs and usage
count, UCONpreA1

:

G is a set of group names
groupId : O → 2G , many to many mapping
CL : S→ 2G×R×K , s is authorized to do r to g for k times
ATT(S) = {CL}
ATT(O) = {groupId}
allowed(s, o, r)⇒ GR 6= φ,

GR = {(g , r) | g ∈ groupId(o)} ∩ {(g ′, r) | (g ′, r, k) ∈ CL(s), k ≥ 1}
λ : GR→ G, a functional mapping to select a group for update
preUpdate(CL(s)) : k = k − 1, (λ(GR), r, k) ∈ CL(s)

5.4 Trust Management

Trust management has mainly focused on authorization decisions of previ-
ously known users. Most of the related research has discussed architectural
and mechanistic aspects of authorizations. Although the UCONABC model also
covers authorizations of strangers, our focus is not how to get a credential to
authorize a stranger’s usage request. Rather, we focus on usage decision policies

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

160 • J. Park and R. Sandhu

and models. In Example 21, a doctor can be mapped to multiple specialities.
If a requester holds any speciality, then he can read the object. However if a
requester want to write on an object, one of his specialities should be same as
the object’s speciality.

Example 21. Hospital information usages of doctor by specialty,
UCONpreA0

:

SPECIALITY is a set of medical specialty names
cert: S→ 2SPECIALITY

groupID : O → SPECIALITY
ATT(s) : {cert}
ATT(o) : {groupID}
allowed(s, o, read)⇒ (cert(s) 6= φ)
allowed(s, o, write)⇒ (cert(s) 6= φ) ∧ groupID(o) ∈ cert(s)

5.5 Digital Rights Management

Usage decisions in commercial DRM solutions usually utilize user-defined,
application-level, payment-based security policies, and do not include tradi-
tional access control policies. Typical examples include pay-per-view, metered
payment, membership-based monthly subscriptions, and so on. These DRM ex-
amples can be realized within our UCONABC model. In Example 22, a usage
request is allowed if a subject holds enough prepaid credits to use certain rights
on specific objects. In this case, the credit is considered as a subject attribute
and the value of the requested usage as an attribute of the object and right.

Example 22. DRM pay-per-use, UCONpreA1
:

M is a set of money amount
credit : S→ M
value : O × R → M
ATT(s) : {credit}
ATT(o, r) : {value}
allowed(s, o, r)⇒ credit(s) ≥ value(o, r)
preUpdate(credit(s)) : credit(s) = credit(s)− value(o, r)

In general, payment-based authorization requires certain update procedures
to resolve usage expenses. In Example 22, a user’s credit has been reduced by the
value of usages at the time of a request approval. In case of metered payment,
post-updates are likely to be required. In Example 23, since a usage on an object
holds more than one value, a system has to select a value for update. The system
may have to select a value based on subject’s membership ranks, sale period, or
multiple purchases. Because the selection policies can vary, Example 23 simply
utilizes a nondeterministic selection function to describe this functionality.

Example 23. DRM pay-per-use, one credit, multiple values, UCONpreA1
:

M is an ordered set of money amount
credit : S→ M

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 161

value : O × R → 2M

ATT(s) : {credit}
ATT(o, r) : {value}
M = {m | m ∈ value(o, r), m ≤ credit(s)}, a set of available values for

selection.

allowed(s, o, r)⇒ ∃m ∈ value(o, r), m ≤ credit(s)
preUpdate(credit(s)) : credit(s) = credit(s)− λ(M),

where λ is a selection function to select a value for update.

In case a user holds more than one credit account, if the sum of credits is more
than a value, the request is allowed. Here, some or all of the credit accounts
have to be reduced in total by the usage value (Example 24).

Example 24. DRM pay-per-use, multiple credits, one value, UCONpreA1
:

M is an ordered set of money amount
credit : S→ 2M

value : O × R → M
ATT(s) : {credit}
ATT(o, r) : {value}
M = {m | m ∈ credit(s)}
M̂ = {m̂ |∑ m̂ = value(o)}
λ : M → M̂ , m ≥ m̂

allowed(s, o, r)⇒∑
credit(s) ≥ value(o, r)

preUpdate(credit(s)) : ∀m, m = m− λ(m)

Many DRM solutions and studies have included some form of obligations
and conditions because of DRM’s distributed and payment-based nature. Some
objects can only be used at certain locations or time durations. A user may have
to provide certain personal information or usage log information for further
use. Some DRM related examples for obligations and conditions are presented
in previous sections.

5.6 Modern Access Control (Healthcare Examples)

Generally, modern access control requires more than authorizations for usage
decision. In this section, we show several healthcare information system exam-
ples that require authorizations, obligations, and conditions. We also show how
one example can be expressed in various ways using different decision predi-
cates. Example 25 shows an example that requires an authorization for usage
decision. Here, the number of doctor’s previous operations is considered as a
subject’s attribute and used for authorization.

Example 25. A medical doctor (s) can perform (r) an operation (o) only if
he has performed operations more than three times, UCONpreA1

:

ROLE is an unordered set of roles
SPECIALITY is a set of medical speciality names
N is a set of subject’s total operation numbers

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

162 • J. Park and R. Sandhu

exp : S→ N
sRole : S→ 2ROLE

sArea : S→ 2SPECIALITY

oArea : O → 2SPECIALITY

ATT(s) : {sRole, sArea, exp}
ATT(o) : {oArea}
allowed(s, o, operate)⇒ ‘doc’ ∈ sRole(s), sArea(s) ∩ oArea(o) 6= φ, exp(s) ≥ 3
preUpdate(exp(s)) : exp(s) = exp(s)+ 1

In Example 26, suppose medical operations can be allowed only when pa-
tients agree on a consent form. This requires additional obligation predicate.
obs is selected based on an object’ attribute, opid . In this example, obligation
actions (ob) have to be performed by patient of the requested operation. Autho-
rization is also used for medical speciality verification.

Example 26. A medical doctor can perform an operation only if patients
agree on consent form, UCONpreA0preB0 :

ROLE is an unordered set of roles
SPECIALITY is a set of medical speciality names
PATIENTid is a set of patients’ identification numbers
sRole : S→ 2ROLE

sArea : S→ 2SPECIALITY

oArea : O → 2SPECIALITY

spid : S→ PATIENTid
opid : O → PATIENTid
ATT(s) : {sArea, spid}
ATT(o) : {oArea, opid}
OBS = {s′|‘PATIENT’ ∈ sRole(s′)}
OBO = {consent}
OB = {agree}
getPreOBL(s, o, operate)
= {(s′, consent, agree)} where s′ ∈ OBS, spid (s′) = opid (o)

allowed(s, o, operate)⇒ ‘doctor’ ∈ sRole(s), sArea(s) ∩ oArea(o) 6= φ
allowed(s, o, operate)⇒ preFulfilled(getPreOBL(s, o, operate))

Suppose there are junior doctors and senior doctors (sRole(o)). In case a ju-
nior doctor wants to perform operations, the operation is allowed only with the
presence of any of his senior doctors. This can be realized by using either au-
thorization, obligation, or condition predicates. Example 27 utilizes condition
predicate that checks current local time and decides whether any of the se-
nior doctors is on-duty at the time of operation request. Authorization is used
together with condition predicate to check doctor’s speciality. In Example 28,
obligation predicate is used to check whether any of senior doctor has agreed
to be available. Alternatively, as shown in Example 29, same example can be
also realized by using authorization predicate. Here, senior doctor’s presence
is treated as an attribute of the subject. In Example 27, 28, and 29, ‘sDoc’ and
‘jDoc’ are labels for senior doctor and junior doctor, respectively.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 163

Example 27. A junior medical doctor can perform an operation only with
the presence of a senior doctor, UCONpreA0preC0 :

ROLE is an unordered set of roles
SPECIALITY is a set of medical speciality names
DOCid is a set of doctors’ identification numbers
curT is a current local time, T is a set of time
sRole : S→ 2ROLE

sArea : S→ 2SPECIALITY

dId : S→ DOCid, a functional mapping of subject to a doctor’s ID number
sdId : S→ 2DOCid, a functional mapping of subject to a set of senior
doctors
dutyS : S→ T , a functional mapping of subject to duty start time
dutyE : S→ T , a functional mapping of subject to duty end time
oArea : O → 2SPECIALITY

ATT(s) : {sRole, sArea, dId, sdId, dutyS, dutyE}
ATT(o) : {oArea}
getPreCON(s, o, operate)

=
{

(∃s′, dId(s′) ∈ sdId(s), dutyS(s′) ≤ curT ≤ dutyE(s′)), if sRole(s) =‘jDoc’;
φ, if sRole(s) =‘sDoc’.

allowed(s, o, operate)⇒ ‘doctor’ ∈ sRole(s), sArea(s) ∩ oArea(o) 6= φ
allowed(s, o, operate)⇒ preCondChecked (getPreCON(s, o, operate))

Example 28. A junior medical doctor can perform an operation only with
the presence of a senior doctor, UCONpreA0preB0 :

ROLE is an unordered set of roles
SPECIALITY is a set of medical speciality names
DOCid is a set of doctors’ identification numbers
sRole : S→ 2ROLE

sArea : S→ 2SPECIALITY

dId : S→ DOCid, a functional mapping of subject to a doctor’s ID number
sdId : S→ 2DOCid, a functional mapping of subject to a set of senior doctors
oArea : O → 2SPECIALITY

ATT(s) : {sRole, sArea, dId, sdId}
ATT(o) : {oArea}
OBS = {s′|‘sDoc’ ∈ sRole(s′)}
OBO = {presence}
OB = {agree}
getPreOBL(s, o, operate)

=
{

((s′, presence, agree) where s′ ∈ OBS, dId(s′) ∈ sdId(s)), if sRole(s) =‘jDoc’;
φ, if sRole(s) =‘sDoc’.

allowed(s, o, operate)⇒ ‘doctor’ ∈ sRole(s), sArea(s) ∩ oArea(o) 6= φ
allowed(s, o, operate)⇒ preFulfilled(getPreOBL(s, o, operate))

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

164 • J. Park and R. Sandhu

Example 29. A junior medical doctor can perform an operation only with
the presence of a senior doctor, UCONpreA0

:

ROLE is an unordered set of roles
SPECIALITY is a set of medical speciality names
DOCid is a set of doctors’ identification numbers
sRole : S→ 2ROLE

sArea : S→ 2SPECIALITY

sdId : S→ 2DOCid, a mapping of subject to a set of on-duty senior doctors.
oArea : O → 2SPECIALITY

ATT(s) : {sRole, sArea, sdId}
ATT(o) : {oArea}
allowed(s, o, operate)⇒ ‘jDoc’ ∈ sRole(s), sArea(s)∩oArea(o) 6= φ, sdId(s) 6= φ

UCONABC model is comprehensive enough to include various access control
policies in a single framework. The goal of UCONABC family model is not to make
an air-tight distinction among the detailed models. In UCONABC model, policies
or requirements can be resolved in multiple ways. Although we have shown
many examples, how one actually implements access (or usage) control policies
and requirements is not the issue of UCONABC model. These issues are to be
considered at the architecture and mechanism layers, not at the model layer.
UCONABC model provides possible ways to realize or express various policies
and requirements in a formal framework. It is this richness and robustness of
the expressive power that makes UCONABC model significant.

6. DISCUSSION

In the previous section, we have demonstrated how traditional access control
policies, trust management, DRM, and healthcare examples can be expressed in
the UCONABC model. In this section, we discuss mutability issues of UCONABC
model briefly. Then we discuss administrative issues on the UCON and examine
some DRM and Healthcare examples in terms of UCON administration. We
also discuss reversed control aspects of usage control as an extension of UCON
administration.

6.1 Mutability Issues in UCONABC Model

Separation-of-Duty (SoD) is one popular issue of classical access control and
has been studied extensively in previous literature [Sandhu 1988; Simon and
Zurko 1997; Gligor et al. 1998]. SoD can be considered as a constraint of at-
tribute assignment. Suppose purchase clerk can only ‘prepare’ a check and ac-
count clerk can only ‘issue’ a check. This is a typical static SoD example. To
enforce static SoD, a system requires that a subject cannot be assigned to both
purchase clerk and account clerk attributes simultaneously. Here both pur-
chase clerk and account clerk are immutable attributes. In UCONABC model
immutable attributes are assumed to be previously assigned to subjects and
objects and managed by administrative actions. In other words, in UCONABC

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 165

model, constraints that have to be applied to the assignments of immutable
attributes are assumed to be already enforced.

Although we can make UCONABC model more complex to enforce static SoD
by including ‘Constraints’ property within the model, since assignment of im-
mutable attribute to subject or object is an administrative issue, and since
UCONABC model is the first step in this arena, we consider only the core issues
of UCON and keep the core model as simple as possible. By simplifying im-
mutable aspects of attributes in UCONABC model, we can focus our discussion
on mutable aspects of attributes.

Mutability is a crucial property for history-based policies (e.g., dynamic SoD,
Chinese Wall) and policies that require consumable attributes (e.g., most of com-
mercial B2C DRM policies). Unlike immutable attributes, mutable attributes
are modifiable as a consequence of subjects’ actions and do not require any
administrative action for updates. Therefore, in UCONABC model, policies that
require mutable attributes are enforced within the core model and not con-
sidered as an administrative issue. While most classical access control models
focus on the management of immutable attributes, UCONABC model separates
core models from administrative issues and deals only with mutable attributes.

6.2 Administrative Issues in UCON

In the UCONABC model, we have mainly focused on usages of consumer subjects
on objects. In this section we assume that usage rules such as authorization,
obligation, and condition rules are already provided. As mentioned earlier, in
UCON, subjects can be either consumers, providers, or identifiees. Each subject
party has close relationships with other parties. One party may influence other
parties’ usage decisions. Each party holds its own rights on objects. Exercising
rights on an object may require certain obligations that have to be fulfilled be-
fore, during or after the rights are exercised. Fulfillment of these obligations
may create other objects (called derivative objects) that have to be protected.
This series of relationships has to be resolved seamlessly in UCON as an ad-
ministrative issue. Here, we discuss some fundamental issues of UCON admin-
istration briefly. We believe that the further work on administrative UCON is
crucial for the success of UCON.

Figure 6 shows an administrative triangle for UCON decisions. Here, a con-
sumer subject is an end-user who is the last beneficiary of an object content in
a supply chain. If allowed by a provider, a consumer can hand over the object
to another consumer and can control usage of the new consumer. In this case,
the original consumer becomes a provider of the object to the new consumer.
Note that this is different from a consumer passing an object or a copy of an ob-
ject to another consumer on behalf of the previous provider of the object while
the previous provider controls usage of the disseminated object. Normally, a
consumer’s usage on an object is likely to be controlled by a single provider. Al-
though there can be multiple providers who actually provide copies of the same
object to a consumer, these copies are considered as separate objects and may
have different control policies. If a provider is not an originator of an object,

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

166 • J. Park and R. Sandhu

Fig. 6. Administrative UCON triangle.

the provider’s ability to control consumers’s usages on the object is likely to be
limited by another provider. If an object o1 includes other objects o2 and o3, a
provider subject s1 of o1 is considered as a consumer of the included objects o2
and o3. In this case, s1’s ability on usages of o1 is also limited by the providers
of o2 and o3. In Figure 6, this chain of usage controls is denoted as “serial us-
age control.” Unlike provider subjects, there exists no control chain of identifiee
subjects. Identifiee subjects are subjects whose individually identifiable infor-
mation is included within an object, therefore holding certain rights to control
usages on the object. Credit card information or DNA information are some of
the examples of individually identifiable information. The usages of an object
that includes these privacy-related information of multiple subjects are (par-
tially) controlled by the identifiee subjects. Such multiple controls on usages
are denoted as “parallel usage control.” In general, identifiee subjects are likely
to limit provider’s usages on the object to control consumer’s usages (dotted
arrows) on their privacy-related information.

As a summary, UCON has to be viewed as a comprehensive approach to pro-
tecting and controlling usages of three subject parties and their relationships
and influences on each other. In today’s dynamic, distributed digital environ-
ment, traditional one-way control no longer provides adequate trustworthiness.
Eventually, unlike previous one-way (from provider to consumer) approaches,
control decision of UCON has to be multidirectional for mutual controls and
privacy protections. We believe these issues are no longer just technical mat-
ters. Business commitment and legal and social support are also crucial for the
success of UCON.

6.3 DRM and Healthcare Applications in UCON Administration

By distinguishing subject parties, UCON emphasizes relationships between
subjects and objects, and between subjects themselves. This distinction is
shown in Figures 7 and 8. Figure 7 is a UCON diagram for privacy nonsensitive

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 167

Fig. 7. Two sides of UCON model for privacy nonsensitive objects.

Fig. 8. Three sides of UCON model for privacy sensitive objects.

objects and Figure 8 is for privacy sensitive objects. The UCON model for
privacy sensitive objects includes an additional subject called identifiee and
relevant rights. Figures 7 and 8 are based on the following legend.

PNO: Privacy Non-sensitive Object
PSO: Privacy Sensitive Object
Cx: Consumer x
Px: Provider x
Ix: Identifiee x

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

168 • J. Park and R. Sandhu

yR: y Rights
yA: y Authorization
yC: y Condition
yB: y oBligation
where x = {x|R, A, C, B}, y = { y |C, P, I}

We will use two examples and demonstrate how UCON models can be applied
for privacy nonsensitive and privacy sensitive digital information. One simple
example is a popular MP3 music file distribution. This example can be explained
with Figure 7 that has provider and consumer subjects sides. Suppose a music
composer (say Bob) wants to sell his new song through a distributor, and a buyer
(say Alice) wants to buy the song from the distributor. In case of the relations
between Bob and the distributor, Bob will be a provider subject (PS) and the
distributor will be a consumer subject (CS). Bob will have certain provider
rights (PR) that are agreed at the time of a contract with the distributor. The
distributor will have rights (CR) to distribute the MP3 song (PNO) and get
certain profits from the sales. Likewise, in case of Alice and the distributor,
Alice will be a consumer subject and the distributor will be a provider subject.
Then Alice has rights (CR) such as play right for the song and the distributor
will have rights (PR) such as copy and disseminate rights on the object. In this
case, Alice may be required to pay ahead (CA) to obtain a play right but only on a
specific player (CC) which is selected by her. In addition, she may have to agree
on submission of her usage log report to the provider (CB). On the other hand,
the distributor can have rights to collect consumers’ usage log information. This
shows that in UCON system, a consumer’s obligation is likely to be a provider’s
right and vice versa.

One good example for the control of privacy sensitive objects might be a
healthcare system. We consider a healthcare system called PCASSO to demon-
strate the UCON model for privacy sensitive objects. The PCASSO project was
developed by UC San Diego and SAIC under the support of NIH [Baker et al.
1997]. The main purpose of the project is to develop a healthcare system that
provides secure access to highly sensitive patient information over Internet.
Access control of PCASSO mainly utilizes labels and roles. Patient records
are labeled with one of the five security levels including Low, Standard, De-
niable, Guardian Deniable, and Patient Deniable. As a provider subject, the
primary care provider provides patient medical record (PSO). In addition, the
primary care provider decides security level of patient medical information.
Care providers (primary, emergency, or others), guardians, researchers, and
even patients can be consumer subjects. In PCASSO, the patient role can be
either a consumer subject or an identifiee subject. As a consumer subject, a
patient can read his medical record if it is not patient deniable. As an identifiee
subject, the patient can review (IR) access log information on his record. Note
that the patient does not have rights to decide use and disclosure of his medical
information in PCASSO.

According to recent regulation called the Privacy Rule from the US Depart-
ment of Health and Human Services (HHS), healthcare providers such as doc-
tors and hospitals are required to obtain a patient’s written consent before

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 169

Fig. 9. An example of reverse UCON.

using or disclosing the patient’s personal healthcare information to carry out
treatment, payment, or healthcare operations (TPO) [HHS 2002]. To use or dis-
close the patient’s medical information for other reasons than TPO, healthcare
providers are required to obtain written authorization documents. In Privacy
Rule, authorization is more detailed and specific than consent. In PCASSO,
neither consent nor authorization is included in the system. Moreover, usage
and disclosure of patient medical information is entirely up to a primary care
provider. For better control of all parties on patients’ healthcare information
and for better privacy protection, these consent and authorization should be
part of identifiee rights in UCON model. Also, it should be the patient who
holds those identifiee rights.

6.4 Reverse UCON

As mentioned above, obtaining or exercising usage rights on a digital object may
create another digital information object (derivative object), which also needs
controls for its access and usage. Some examples are payment information, us-
age log, and so on. The usage control on these derivative objects is reversed
in its control direction in such a way that the provider subject becomes the
consumer subject and vice versa. This reversed usage control is called reverse
UCON and the rights are called reverse rights. Furthermore, obtaining or ex-
ercising the reverse rights on these derivative objects may also create other
derivative objects and reverse (more correctly inverse) rights on it.

Figure 9 shows an example of reverse UCON. Some components are omitted
in this diagram for the sake of simplicity. Suppose Alice wants to listen to a MP3
music file. To obtain play rights, she as a consumer subject (CS) may have to
agree on payment-per-play (OB: obligation) and provide credit card information.
Upon her exercise of the play rights, she has to report her usage log on the MP3
file (OB). In UCON, this payment information and log information are also
considered as objects (derivative objects) and as part of UCON model. Now

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

170 • J. Park and R. Sandhu

Alice becomes both a provider subject (PS) and an identifiee subject (IS) of the
log/payment information and may hold certain rights (PR and IR) on them such
as the right that she can delete her ID from log information. The distributor
may have rights to collect log information either by putting an obligation on
consumer rights or by giving consumer rights to get some store credits on log
reports. If Alice has rights to get some store credit based on her play time, then
it is now distributor’s obligation as a provider subject to issue certain credit to
Alice.

Control and protection of rights and usage of rights on the derivative objects
have been hardly recognized or discussed in information security literature. In
UCON, reverse UCON can be viewed as part of the UCON model and is not
different from ordinary UCON in its model specifications. In general, deriva-
tive objects are likely to include privacy-related information. Adequate controls
on derivative objects will be crucial for better privacy treatment. By handling
derivative objects in UCON system, at least security and privacy issues can be
discussed systematically within a common framework.

UCON systems are likely to be implemented and managed under the control
of one of the three subject sides: consumer, provider, or identifiee. This implies
it’s hard to guarantee availability of adequate control mechanisms implemented
for the other two sides on the rights and usage of rights. There can be also a third
party who develops/manages UCON system on behalf of all of PS, CS, and IS
sides. Therefore, to make a sound reverse UCON system available, there should
be either a voluntary commitment from a development/management group or
legal enforcement. In its implementation, UCON system may have to include
following mechanisms for reverse UCON.

—To provide ability to review detail of derivative objects which are going to be
created.

—To provide ability to refuse creation of derivative objects (the consumer may
have to give up or reduce exercising original rights).

—To provide ability to restrict reverse usage by blocking certain part of deriva-
tive objects (i.e., identity) or by allowing only aggregated information of in-
dividual objects.

—To provide ability to monitor reverse usage on derivative objects (this may
cause another round of reverse UCON).

7. RELATED WORK

Several lines of related research were discussed in the introduction. Of
these the policy-based authorization representation and enforcement model of
Ryutov and Neuman [2001, 2002] is possibly the closest to our UCONABC mod-
els. This model builds authorizations from objects, rights, and conditions. A
possible implementation by means of extended access control lists (EACLs) is
outlined. Subjects are not explicitly recognized in EACLs but are rather em-
bedded into conditions. Similar to UCONABC, this model also recognize pre-
and mid-conditions. We feel that UCONABC pre and ongoing decisions are more

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 171

precisely and systematically defined. In addition to pre- and mid-conditions,
the model also identifies “post-conditions” which may have “side-effects” as
part of the model to resolve update timing issue. However its definition of post-
condition is closer to an implementation level aspect. In UCONABC model point
of view, it may be viewed as a special case of pre-authorization with pre-update
model (UCONpreA1

) implementation. This is largely because of its lack of sys-
tematic treatment on mutability issue. At this point the UCONABC model is
more mature and comprehensive.

The term ‘obligation’ has been used with different meanings in the literature.
Damianou et al. introduced the Ponder policy specification language [Damianou
et al. 2001]. Ponder policies consists of authorization, obligation, refrain, and
delegation policies. Schaad and Moffett have discussed further on the obligation
part of Ponder [Schaad and Moffett 2002]. In both case, obligations are duties
that have to be done independently from users’ access requests. For example,
software developer of a project A in an organization may have duties to pro-
vide weekly progress report to project manager. These duties are given to him
not because he has requested certain accesses, but because he has assigned to
a software developer role in the organization. Schaad and Moffett argue that
obligations require authorizations so the required actions can be performed. By
definition, UCON obligation is different from Ponder obligations (or duties). In
UCONABC model, obligations are what subjects have to perform before or during
(or even after in case of global obligation) obtaining or exercising usages. If an
obligation is required, it just has to be done and does not require any authoriza-
tion process for obligation fulfillment. Fundamentally, obligations in UCONABC
model are different from duties. Also, UCONABC model does not include any
concept of duties in its model.

The notion of “provisional authorization” has been introduced in recent lit-
erature [Kudo and Hada 2000; Jajodia et al. 2001]. In a narrow definition, pro-
vision is what has to be performed prior to the authorization of usage requests.
Provision is similar to UCON pre-obligations. Bettini et al. have discussed the
notion of “obligation” [Bettini et al. 2002]. Here, obligation is what has to be
performed after authorization decisions. This is similar to our global obliga-
tions. Neither has defined a notion for ongoing-obligations that have to be ful-
filled continuously or regularly while the requested action is being performed. In
the UCONABC model, obligations are defined and discussed in systematic man-
ner so that they can be used for various situations with finer-grained controls.
What really sets UCONABC apart from other research efforts is its systematic
and comprehensive effort to provide a new intellectual foundation for access
control. No prior effort has this reach and scope.

In terms of industry trends two ongoing efforts are worth mentioning. Con-
tentGuard’s eXtensible rights Markup Language (XrML), evolved from Xerox
PARC’s DPRL, has emerged as an OASIS based standard for rights expres-
sion languages [ContentGuard 2002; Wang et al. 2002]. As defined in its XML
schema-based specification version 2, ‘grant’ consists of four entities called prin-
cipal, rights, resource, and condition [ContentGuard 2002; Wang et al. 2002].
XrML conditions include terms, conditions, and obligations. However, their

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

172 • J. Park and R. Sandhu

definition of terms, conditions and obligations are different from our conditions
and obligations, and not as precise as ours. Further, while XrML may express
various rules and policies for rights, it fails to resolve a transaction-based
decision-making process. For example, XrML can express “student can play
a MP3 file 5 times” but assumes usage history of “play” rights is supported by
applications. Hence, it fails to resolve mutable cases such as “after being played
2 times, now the MP3 file can be played only 3 more times.” Also there is no at-
tempt to express ongoing decision making. Similar shortcomings can be found
also in OASIS eXtensible Access Control Markup Language (XACML) [Godik
and Moses 2002]. Although authorization in XACML is based on transaction
or request, it fails to cover mutable cases and ongoing cases.

8. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel concept called usage control and
its core model called UCONABC for controlling access to and usage of digital
resources. UCON encompasses traditional access control, trust management,
and DRM and goes beyond them in its scope. By unifying these diverse areas
in a systematic manner, the UCONABC model offers a promising approach for
the next generation of access control.

We have given a description of the UCONABC family of models for UCON. The
models, and their relationships, are summarized in Figure 5. We emphasize that
we have only described the “pure” models corresponding to individual points in
these figures. In practice, we would expect real systems to use composite models
which combine several of these together. Space does not permit us to explore the
expressive power of combined models. Nonetheless, we have shown by example
that a wide range of policies can be easily expressed in these models.

It has been our explicit goal to accommodate all the ideas we have seen in
the access control literature in the past decade in a single unified framework.
In particular, we have looked to the DRM community for inspiration to take us
beyond the usual bounds of access control.

We believe the UCONABC models achieve the desired unification at an appro-
priate level of abstraction and provide a solid foundation for further research.
UCONABC leaves open the architecture and mechanisms for providing trusted
attributes. This is one of the important challenges as we look ahead. Delega-
tion of rights is among the crucial issues that should be covered within UCON
framework. In addition, there should be a clear description of administration
issues. We believe further studies on these issues will provide more compre-
hensive solution approaches for the area of UCON.

There is increasing realization that traditional access control is not ade-
quate for modern application needs. Many researchers have published possible
extensions to the basic access control concepts. This paper is the first effort
to overhaul the underlying foundation of access control itself. It provides a ro-
bust and integrated framework for access control models and systems of the
future. We hope this UCONABC approach will reunify a discipline that is start-
ing to get fragmented at a time when the importance of access control is being
increasingly appreciated.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

The UCONABC Usage Control Model • 173

REFERENCES

ABADI, M., BURROWS, M., AND LAMPSON, B. 1993. A calculus for access control in distributed sys-
tems. ACM TOPLAS 15, 4, 706–734.

ANDERSON, R. 2002. TCPA/palladium frequently asked questions. Available at http://www.
cl.cam.ac.uk/˜rja14/tcpa-faq.html.

ARBAUGH, W. 1997. A secure and reliable bootstrap architecture Proceedings of the IEEE Sympo-
sium on Security and Privacy, 65–71.

BAKER, D., BARNHART, R., AND BUSS, T. 1997. PCASSO: Applying and extending state-of-the-art
security in the healthcare domain. Proceedings of the Annual Computer Security Applications
Conference.

BELL, D. AND LAPADULA, L. 1973. Secure computer systems: Mathematical foundations and model.
MITRE Report, MTR 2547, v2, November.

BETTINI ET AL. 2002. Obligation monitoring in policy management. Proceedings of the Workshop
on Policies for Distributed Systems and Networks.

BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. Proceedings of
IEEE Symposium on Security and Privacy.

CONTENTGUARD. 2002. XrML: Extensible rights Markup Language Core 2.1 Specification. Avail-
able at http://www.xrml.org.

DAMIANOU ET AL. 2001. The ponder policy specification language. Proceedings of the Workshop on
Policies for Distributed Systems and Networks.

GODIK, S. AND MOSES, T. 2002. OASIS eXtensible Access Control Markup Language (XACML)
Specification 1.0. Available at http://www.oasis-open.org/committees/xacml/docs/.

GLIGOR, V., GAVRILA, S., AND FERRAIOLO, D. 1998. On the formal definition of separation-of-duty
policies and their composition. 19th IEEE Computer Society Symposium on Research in Security
and Privacy.

GUNTER, C., WEEKS, S., AND WRIGHT, A. 2001. Models and languages for digital rights. Proceedings
of the Hawaii International Conference on System Sciences.

HARRISON, M. H., RUZZO, W. L., AND ULLMAN, J. D. 1976. Protection in operating systems. CACM
19, 8, 461–471.

HERZBERG, A., MASS, Y., MIHAELI, J., NAOR, D., AND RAVID, Y. 2000. Access control meets public key
infrastructure, or assigning roles to strangers. Proceedings of IEEE Symposium on Security and
Privacy.

HHS. 2002. Standards for Privacy of Individually Identifiable Health Information. Available at
http://www.hhs.gov/ocr/hipaa/finalreg.html.

IANNELLA, R. 2002. Open Digital Rights Language V1.1. Available at http://odrl.net.
JAJODIA, S., KUDO, M., AND SUBRAHMANIAN, V. S. 2001. Provisional authorizations. In E-Commerce

Security and Privacy, Anup Gosh (Ed.) Kluwer Academic Press, Boston, MA.
KAPLAN, M. 1996. IBM Cryptolopes, Superdistribution and Digital Right Management. Available

at http://www.research.ibm.com/people/k/kaplan.
KUDO, M. AND HADA, S. 2000. XML document security based on provisional authorization. Pro-

ceedings of the ACM Conference on Computer and Communications Security.
LANDWEHR, C. 1997. Protection (Security) Models and Policy The Computer Science and Engineer-

ing Handbook. CRC Press, Boco Raton, FL, 1914–1928
LAMPSON, B. W. 1971. Protection. 5th Princeton Symposium on Information Science and Systems.

Reprinted in ACM Operating Systems Review 8, 1, 18–24, 1974
LAMACCHIA, B. 2002. Key challenges in DRM: An industry perspective. Proceedings of the 2nd

ACM DRM Workshop (in conjunction with ACM CCS Conference) November.
MIT 2001. Ten emerging technologies that will change the world. MIT Technology Review

(Jan/Feb).
P3P 2002. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification. Available at

http://www.w3.org/P3P/.
PARK, J. AND SANDHU, R. 2002. Towards usage control models: beyond traditional access control.

Proceedings of Seventh ACM Symposium on Access Control Models and Technologies.
ROSENBLATT, B., TRIPPE, B., AND MOONEY, S. 2002. Digital Rights Management: Business and Tech-

nology. M&T Books.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

174 • J. Park and R. Sandhu

RYUTOV, T. AND NEUMAN, C. 2001. The set and function approach to modeling authorization in
distributed systems. Proceedings of the Workshop on Mathematical Methods and Models and
Architecture for Computer Networks Security.

RYUTOV, T. AND NEUMAN, C. 2002. The specification and enforcement of advanced security policies.
Proceedings of the Workshop on Policies for Distributed Systems and Networks.

SANDHU, R. 1988. Transaction control expressions for separation of duties. In Proceedings of the
Fourth Computer Security Applications Conference, 282–286.

SANDHU, R. 1993. Lattice-based access control models. IEEE Computer (Nov.), 9–19.
SANDHU, R. 2000. Engineering authority and trust in cyberspace: The OM-AM and RBAC way.

Proceedings of the 5th ACM Workshop on Role-Based Access Control, Berlin, Germany, July 26–28,
111–119.

SANDHU, R. AND SAMARATI, P. 1994. Access control: Principles and practice. IEEE Communication
Magazine (Sept.), 40–48.

SANDHU, R., COYNE, E., FEINSTEIN, H., AND YOUMAN, C. 1996. Role-based access control models.
IEEE Computer (Feb.), 38–47.

SCHAAD, A. AND MOFFETT, J. 2002. Delegation of obligation. Proceedings of the Workshop on Policies
for Distributed Systems and Networks.

SCHNECK, P. 1999. Persistent access control to prevent piracy of digital information. Proceedings
of the IEEE 87, 7 (July).

SIBERT ET AL. 1995. The DigiBox: A self-protecting container for information commerce. Proceed-
ings of USENIX Workshop on Electronic Commerce.

SIMON, R. AND ZURKO, M. 1997. Separation of duty in role-based environments. IEEE Computer
Security Foundations Workshop.

TCPA. 2002. Trusted Computing Paltform Alliance, Main Specification V1.1b. Available at
http://www.trustedcomputing.org/docs.

THOMAS, R. AND SANDHU, R. 1997. Task-based Authorization Controls (TBAC): Models for Ac-
tive and Enterprise-Oriented Authorization Management Database Security XI: Status and
Prospects, North-Holland, Amsterdam.

WANG ET AL. 2002. XrML—eXtensible rights Markup Language. Proceedings of ACM Workshop
on XML Security.

WEEKS, S. 2001. Understanding trust management systems. Proceedings of IEEE Symposium
on Security and Privacy.

WINSBOROUGH, W., SEAMONS, K., AND JONES, V. 2000. Automated trust negotiation. Proceedings of
the DARPA Information Survivability Conference and Exposition.

ZHANG, X. 2004. Personal communication.

Received January 2003; revised August 2003, January 2004; accepted January 2004

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

